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ABSTRACT

I focus on the dynamic moduli of filled rubber and a novel strategy for their computation via molecular modelling. This work
explores a theoretical methodology to predict tire performance parameter changes, e.g. changes in rolling resistance, in
relation to alterations in a rubber material’s chemical composition. The bridging of scales from times and sizes of the molecular
domain to those of macroscopic samples is achieved by interlacing an analytical model with simulations on different level of
coarse-graining. The model is for tanδ , the loss modulus divided by the storage modulus of the material, which is a laboratory
indicator for rubber performance parameters in the tire industry. It is shown how tanδ can be understood in terms of temperature
or in terms of strain amplitude, including its dependence on filler particle size, filler loading or filler type. All parameters in the
model possess clear physical meaning. The particular appeal of the final expression for tanδ is its ability to relate chemical
detail, which enters the model via independent molecular modelling calculations, to the aforementioned macroscopic tire
performance parameters.

1 Introduction
’Chemistry by computer’ has been part of the methodological tool chest of material developers in academia and industry for
two or three decades (e.g.1). Nevertheless, it remains difficult to forsee the properties of materials on the macroscopic spatial or
temporal scales in relation to their chemical composition or changes thereof. This ’scale-bridging problem’ is often attacked by
coarse-graining schemes. Another approach employs analytical models, containing parameters or functions thereof, which
in turn can be modelled in the molecular domain. Here we summarize and extend work based on the latter approach to the
prediction of the dynamic moduli in highly filled elastomers2–4. The specific quantity of interest is tanδ , the ratio of the
loss modulus µ ′ to the storage modulus µ ′′, of rubbers. tanδ = µ ′′/µ ′ is a useful laboratory indicator for tire performance
parameters, because of its correlation to rolling resistance or grip under various road conditions (e.g.5). Thus, we shall discuss a
model for tanδ , identify the parts of the model accessible to molecular modelling techniques and present a number of example
results illustrating the general usefulness of this methodology. The model developed here allows to understand tanδ , either in
terms of temperature or in terms of strain amplitude, and its dependence on filler particle size, filler loading or filler type. All
parameters in the model possess clear physical meaning. The particular appeal of the final expression for tanδ is its ability
to relate chemical detail, which enters the model via independent molecular modelling calculations, to the aforementioned
macroscopic tire performance parameters.

2 The Model
Figure 1 is a cartoon of the filler network traversing the rubber material. The filler network consists of the actual filler aggregates
embedded in a ’polymer coat’ of a certain thickness. In addition we concentrate on filler volume fractions φ > φc, where φc is
the filler volume fraction at the percolation threshold. To a first approximation the material’s storage modulus should be given
by the sum of the two terms mathematically representing the bulk polymer and filler network in Fig. 1, i.e.

µ
′ ≈ µ

′
bulk poly +

(
φ

φc

)Y
γ

R
xixi,A(T )h(u) . (1)

Note that ’bulk polymer’ in the present case may include a weak φ -dependence due to hydrodynamic reinforcement, for
instance by including a factor (1+5φ/2)6.
Here we will be focussing on the filler network’s contribution to the overall storage modulus, which is described by the second
term. The factor φY , where Y is a positive number, is well known and describes the structural filler reinforcement based on the
notion of a self-similar or fractal filler distribution in the polymer matrix6. Based on this Y is found to be around 3.5, but may



Figure 1. Left: Cartoon of a filled elastomer. The grey area is bulk polymer. The filler network is understood to consist of the
actual filler aggregates embedded in a ’polymer coat’ (reddish hue). Right: Different types of bonds connecting two aggregates
depicted as large circles instead of lumps of smaller primary filler particles as in the left panel (top: Single polymer segment or
cross-linked polymer segments bridging the gap between the particles (open circles: physical bonds; closed circle: chemical
bond); center: The symbol in the center represents a strong direct bond (e.g. a hydrogen bridge in the case of silica); bottom:
Silanes on the left aggregate prevent the physisorption of the polymer segment.)

vary considerably in the experiments7. The remaining factor R−1xixi,A(T )h(u) is discussed in detail in Ref.4. Here R is the
aggregate size (or radius), which is found to be roughly proportional to the size of the primary particles8. The quantity xi is
the number fraction of bonds of type i between neighboring aggregates in a (load bearing) network strand. It is multiplied by
xi,A(T ), which is the fraction of i-bonds in the closed state at temperature T . Notice that the summation convention applies to
xixi,A(T ).

A bond can be a hydrogen bond between silanol groups on adjacent silica particles when the filler is silica. A bond can also be
formed by a polymer segment physisorbed on a particle surface. If the polymer itself, or as part of a network strand, bridges
the gap to an adjacent filler particle then this connection can serve as a bond as well. Similar bonds can be formed involving
silanols. In general, a ’bond’ can be every conceivable atomic or molecular bond, which can break reversibly (in a mechanical
sense) under the influence of strain (cf. right panel in Fig. 1). Note that every bond type has its characteristic energy Ea,i, i.e.
xi,A = xi,A(T ;Ea,i). Notice also that xi,A(T ;Ea,i), which is calculated explicitely in Ref.2, is monotonously decreasing function
of temperature, whose rate of decrease depends on Ea,i. Typical values for Ea,i vary between about Ea = −10 kJ/mol, for
dispersion attraction between short polymer segments and particle surfaces, and Ea =−25 kJ/mol, for hydrogen bonding.

The function h(u)= (1−(D/d)u)−y, where u is the macroscopic strain amplitude, is the load-baring network strands distribution
derived in Ref.2, again based on the assumption of self-similarity. The ratio D/d is the (mean) aggregate diameter (D = 2R)
divided by the (mean) inter-aggregate separation along a load-bearing network strand and y is a positive exponent. Plotting h(u)
versus logu yields the typical decrease ∆µ ′ of the storage modulus depicted in the left panel of Fig. 2 - the Payne effect. The
temperature dependence of ∆µ ′ is given by xi,A(T ).

We can understand the the meaning of the quantity γ more easily if we insert typical numbers into Eq. (1). For instance we
may assume φ ≈ 2φc (e.g. for N220 the percolation threshold is around 30 phr9) or (φ/φc)

3.5 ≈ 10. In this case we expect
µ ′−µ ′bulk poly ∼ 107 Pa at u = 0 (which means h(u = 0) = 1). We also expect that xixi,A between 0.1 to 1. In addition we have
R ∼ 10−8 m. Thus we find that γ is between 10 to 100 in units of mJ/m2. This is a very plausible range for interfacial free
energies in the systems of interest10. It is particularly pleasing that this range arises naturally on the basis of other typical
numbers within this context. Notice that interfacial free energies in general are functions of temperature. Our γ refers to the
hypothetical limit when xi,A = 1 ∀i, the entire temperature dependence is absorbed in the quantities xi,A.

We now turn to the loss modulus µ ′′. In the linear theory the dissipated energy density is w ∝ µ ′′u2, where the proportionality
constant is of no immediate importance. Even if the system becomes non-linear, as is the case for filled elastomers, we may
continue to use this as a definition. In fact this is how most rheological data are analysed - even if the material is non-linear.

As before in the case of µ ′ we approximate µ ′′ as a sum of a contribution from the bulk polymer plus a contribution from the
network, i.e.
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Figure 2. Illustration of the characteristic shape of the storage and loss moduli vs. strain amplitude. Left panel - dashed lines:
Payne effect. Right panel - dashed lines: modulus depression at small strain amplitude u caused by strain inhomogeneity.

µ
′′ ≈ µ

′′
bulk poly +

(
φ

φc

)Y Wloss(T )
R

1
u2

∫ u

0
du′
∫

∞

0
dδu f (δu,u′)

(
1−h(u′)

)
. (2)

Again we concentrate on the second term in Eq. (2), i.e. the filler network’s contribution to µ ′′. The factor u−2 indicates
the application of a linear analysis. The remainder basically accounts for w contributed by the network. The central element
dissipating energy is the contact between neighboring aggregates in a network strand (cf. the red box in the network cartoon
depicted in Fig. 1). Externally applied strain may cause a contact to open. If the strain is relaxed the contact may close again.
Closing means that bonds in the the above sense will close, i.e. we consider reversible bonds only at this point. Notice that
’reversible’ here does not mean thermodynamic reversibility. It merely means that the bonds can open and close, but that
this process is accompanied by energy dissipation in the contact. But how many contacts do contribute to µ ′′(u) in a strain
sweep from 0 to u? Naively we assume that this number is proportional to

∫ u
0 du′(1−h(u′)), where h(u′) is the distribution of

load-bearing network paths. The normalization is such that h(u′ = 0) = 1, which means that the number of contributing contacts
vanishes when the strain amplitude is zero. It is important to note that this does not imply that the attendant loss modulus
vanishes. In order to understand this we expand 1−h(u′) for small u′, which yields 1−h(u′) ∝ u′. Therefore, this time for
small u, we find

∫ u
0 du′(1−h(u′)) ∝ u2. Remembering the factor u−2 we find that u−2 ∫ u

0 du′(1−h(u′)) approaches a constant
in the limit u→ 0. This is in line with typical measurements as depicted in the right panel of Fig. 2. But what is the reason for
the double integration in Eq. (2)? Notice that h(u′) and therefore

∫ u
0 du′(1−h(u′)) decreases monotonously with increasing u′

and u, respectively. This means that the characteristic maximum of µ ′′(u) cannot be described by u−2 ∫ u
0 du′(1−h(u′))! This

inconsistency with experimental evidence may be overcome by including the spatial non-uniformity of the strain amplitude
throughout the material. In the following we make the simple assumptions that u′ is an average and that the deviations from this
average in different regions of the material can be described by a Gaussian distribution

f (δu,u′) =
1√

2πs2

∫
∞

0
dδuexp[−(δu−u′)2/(2s2)] . (3)

Here the normalization is such that
∫

∞

0 dδu f (δu,u′)→ 1 if u′� s. The distribution is shown in Fig. 3 for three different values
of u′/s. When u′� s the integration over dδu will always yield a number close to unity and there is no discernible effect on
the amplitude dependence of µ ′′(u). If however u′ becomes comparable or smaller than the width of the distribution, then the
integration over dδu yields smaller values between 1 and 0.5. This in turn will decrease µ ′′(u) if u is comparable to s as well
(otherwise, i.e. u� s, the effect again will be negligible). Thus, the ’depression’ of µ ′′(u) observed at small strain amplitudes
is a consequence of the strain inhomogeneity within the material. The position of the maximum of µ ′′(u) is correlated with the
width s of the distribution. We must note, however, that the Gaussian shape of the distribution merely is a simple assumption,
i.e. shapes deviating from a Gaussian are possible and even likely. Nevertheless, the effect, i.e. the low-amplitude cut-off of the
distribution, will persist! In Ref.2 the interested reader can find approximations to the somewhat unwieldy double integral. The
factor (φ/φc)

Y R−1 arises due to the fractal nature of the filler distribution assumed here. It is the same for both the storage and
the loss modulus contributions of the filler network. Finally there is the loss contribution of a contact per unit area, Wloss(T ).
In Refs.3 Wloss(T ) is studied applying molecular dynamics simulations to contacts between silica particles. The particles
usually posses diameters between 4 to 6 nm, which still is smaller than the primary particle and of course the aggregate size
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Figure 3. Left: Distribution function f (δu,u′). Right: A contact between filler particles (cf. the red box in left panel of Fig.
1), closed and open, simulated via molecular dynamics at atomic detail. Here the silanized silica particles are embedded in
sulfur cross-linked polyisoprene.

in experimental systems. Nevertheless, we were able to identify two contributions to Wloss(T ). One is the viscous loss in the
’polymer coat’ surrounding the particles. The second one is due to a mechanic instability during the opening and subsequent
closing of a contact caused by cyclic strain, which lets the particles alter their separation via spontaneous relative displacements
(’jumps’), leading to energy dissipation into the surrounding polymer matrix3. Whereas the viscous contribution is strongly
reduced when the temperature rises, the ’jump’ dissipation is less affected. We have argued that this mechanism is a major, and
perhaps the major, contributor to rolling resistance in automobile tires3.
As before, in the case of γ , we may obtain a better feeling for Wloss, which also has the unit J/m2, by inserting typical
values for the other quantities in Eq. (2). Guided by the example in Fig. 2 we expect something on the order of 1 MPa
or less for the network contribution to µ ′′. As before we set (φ/φc)

3.5 ≈ 10. In the limit of vanishing amplitude we have
1
u2

∫ u
0 du′

∫
∞

0 dδu · · · ≈ 1
4

D
d y. From previous comparisons to experimental data (cf. table 1 in Ref.2), using D/d and y as fit

parameters, we know that D
d y∼ 10 is probably typical. Using as before R = 10 nm, we conclude that Wloss(T ) should be about

1 mJ/m2 or somewhat less. This is reasonable in the sense that the number is significantly smaller than the above value for
γ . Whereas γ may be interpreted is a measure for the entire (free) energy of the contact, Wloss is a measure for the energy
dissipated during a cycle, i.e. ’opening’ the contact and subsequently ’closing’ the contact cannot be expected to dissipate the
entire energy of the contact, because only a small fraction of all bonds involved are temporarily broken.
Before we can compare our model to experimental data, we need to fix µ ′bulk poly and µ ′′bulk poly. For the sake of a mere
demonstration of the model, we describe these moduli using the simple Zener model, i.e.

µ
′
bulk poly/µ1 =

τ2ω2/θ +1
τ2ω2 +1

and µ
′′
bulk poly/µ2 =

τω

τ2ω2 +1
(4)

where τ = η/µ2 and θ = µ1/(µ1 +µ2). The quantity τω is the product of a characteristic relaxation time τ and the excitation
frequency ω . Using the principle of frequency-temperature superposition via lnτω = a/T −b, where a and b as well as µ1 and
µ2, are adjustable parameters, yields basically the experimental tanδ -peak.

3 Comparison to the experiment

Wang11 describes a series of experimentally measured dynamic moduli, based largely on a standard system, which is systemati-
cally studied by altering a single material parameter keeping the others fixed. This study furnishes a nice testing ground for the
above ideas. By fitting the model to the standard system, it is possible to compare the model prediction to the experimentally
measured tanδ -curves when different parameters, e.g. filler volume fraction, particle size or filler type, are varied.
The left panel in Fig. 4 shows the standard system, SSBR Duradene 715 containing 50phr carbon black N234 in comparison to
the unfilled polymer and other carbon black grades. For instance, the N660-primary particles are roughly twice the size of the
N234-primary particles. On the basis of tables II and III in reference8 we conclude that this remains true for their attendant
aggregates. Thus, in this case the parameter R increases by a factor of 2 and the resulting theoretical tanδ is shown by the
dashed black line. We observe that the two theoretical curves almost coincide at low temperatures, i.e. in the temperature range
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Figure 4. Left: Comparison of tanδ vs. temperature for different particle sizes. The symbols are experimental data points for
unfilled and filled (50phr) SSBR Duradene 715 extracted from Figure 23 in reference11. The dynamic strain amplitude is 5%.
Hollow circles: gum; solid diamonds: N660; solid circles: N347; open squares: N234. Both lines are obtained using the model.
The solid line is fitted to the N234-data (our reference system). Keeping all other parameters fixed the dashed line is obtained
by doubling the particle radius. Right: Experimental tanδ vs. strain amplitude extracted from Figure 21 in reference11,
obtained for unfilled and filled (50phr) SSBR Duradene 715, (symbols) compared to our model (lines). Hollow circles: gum;
solid diamonds: N660; solid circles: N347; open squares: N234. The solid line (dashed line) is obtained using the same
parameters as in the case of the solid line (dashed line) shown in the left panel.

of the peak. Because of the additivity assumption underlying the moduli and because we keep the parameters of the Zener
model fixed (for the same polymer), this is not surprising. On the other hand, on the high temperature side of the peak our
model provides the qualitatively correct result. The right panel in Fig. 4 shows the corresponding data and theoretical results
for tanδ versus strain amplitude. Note that no further adjustment is made. Again the model yields qualitative agreement with
the data, even though the decrease of the data on the high amplitudes side of the peak is far less pronounced. Notice that the
peak and in particular the decrease on the low amplitude side is governed by the strain distribution function (3), i.e. without
f (δu,u′) the model would not exhibit this peak at all.
One final example is shown in Fig. 5. The open squares and the black line are for the above reference system (a slight
adjustment of peak position was necessary due to a correspond ing shift in the experimental data). The red data are for the
silica filled rubber. In both cases the filler content is 50 phr. In order to describe the silica, we modify two parameters in the
theory. First the activation energy is increased from Ea =−8 kJ/mol, rather typical for the interaction of few methylene groups
with carbon black, to Ea =−25 kJ/mol. This value corresponds to the energy of hydrogen bonds. The silica used here is a
precipitated silica, usually possessing a large density of hydroxyl groups on its surface (around 5 to 6 per square nanometer). It
is therefore reasonable that hydrogen bonding between particles is present. In addition, it was consistently found in computer
simulations that when the bonds linking particles become stronger Wloss(T ) increases (e.g. reference [20]). We account for this
by increasing Wloss(T ) to 1.5 Wloss(T ). The factor 1.5 here is a convenient fit parameter, which yields the intersection with the
solid black curve at about the temperature where the experimental curves cross. In principle however, a separate modelling
calculation for this particular system is needed to obtain the correct Wloss(T ).
Additional comparisons to the data in Ref.11 can be found in Ref.4.

4 Conclusion
This paper summarizes recent work on the dynamic moduli of filled elastomers in general and the Payne effect in particular.
The model discussed here is meant to explain or incorporate as many as possible of the basic observations when highly filled
elastomers are studied with dynamic mechanical analysis. Examples include the Payne effect and its dependence on temperature,
the maximum of the loss modulus or the changes of the dynamic moduli when the filler content, particle size or filler type
is altered. The model also divides the overall description of the structure-property-relationship into manageable pieces. It
identifies functional quantities like the load-bearing path distribution or the distribution of strain inhomogeneities and their
respective mechanical effects. It also identifies quantities, most notably Wloss(T ), which are accessible via molecular simulation,
allowing to study consequences of chemical changes, e.g. a different silane, on mechanical properties. Of course, alterations
in the compounding will affect the distribution of filler and the overall structure of the filler network, i.e. the load-bearing
path distribution or the distribution of strain inhomogeneities - in addition to parameters like the exponents Y and y or the
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Figure 5. Experimental tanδ vs. temperature extracted from Figure 29 in reference11, obtained for filled (50phr) SSBR
Duradene 715, (symbols) compared to the model (lines). The dynamic strain amplitude is 5%. Hollow squares: filler is Carbon
black (N234); red solid circles: filler is silica (HiSil 210).

microscopic strain amplification factor D/d. Simulation techniques, which allow to connect chemical composition changes or
even changes in material processing will have to resort to coarse-graining. Recent efforts along this line, in which the author is
involved, are described in Ref.12.
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