A video course on

"Concepts in Soft Matter Physics"

-July 2019-

This course is offered annually in the Master program ,Computer Simulation in Science' as part of the Materials Science specialization. Students enrolled in the Physics Master may take this course in partial fulfillment of their ,Fachliche Spezialisierung', where it is worth up to 9LP. Please be sure to consult with your prospective thesis advisor about your intention prior to taking the course.

Week 1	Lec 1	Review	
		thermodynamics	
W1	Lec 2	statistical Mechanics	
W2	Lec 3	Non-Equilibrium Thermodynamics:	
		transport in terms of fluctuation relaxation	R2014
W2	Lec 4	continuation of transport in terms of fluctuation relaxation	R2014
W3	Lec 5	balance equation approach to transport	R2014
W3	Lec 6	Green-Kubo relations for the transport coefficients using the thermal	
		conductivity as an example	
W4	Lec 7	entropy production in a steady state	R2014
W4	Lec 8	chemical complexity and the second law versus evolution	R2014
W5	Lec 9	Special Topics: Percolation, Fractals and Chaos – scale invariance without	R2004,GT1995
		Hamiltonian	
		percolation	
W5	Lec 10	fractals, chaos and scaling	R2004, GT1995
W6	Lec 11	Polymer Statistical Mechanics:	RC2003, dG1979,
		a brief introduction, probability distribution of the end-to-end distance and	W2009
		Flory`s calculation of v	
W6	Lec 12	rubber elasticity and characteristic ratio for chains of independent	
		monomers	
W7	Lec 13	characteristic ratio in the cases of freely jointed, freely rotating and	
		monomers with hindered rotation	
W7	Lec 14	transfer matrix and rotational isomeric state approximation	
W8	Lec 15	self-consistent field approach	
W8	Lec 16	lattice statistics of crowded polymers (solutions, melts and gels)	
W9	Lec 17	mechanical analysis of viscoelastic (polymer) materials	
W9	Lec 18	Rouse dynamics of a single chain	
W10	Lec 19	Reversible Supramolecular Assembly: Micelles, Vesicles, Membranes,	I2011, EW1999
		Interfaces:	
		Examples and applications of reversible molecular self-assembly;	
	-	equilibrium size distribution and critical micelle concentration	
W10	Lec 20	phenomenology of growth and shape	
W11	Lec 21	surface tension, work of adhesion and wetting	
W11	Lec 22	computational aspects of surface tension	
W12	Lec 23	micellar solutions at higher concentrations - coupling of growth to shape	C2000, GBR1994
		and orientation for rod-like aggregates	
W12	Lec 24	liquid crystallinity	C2000, GBR1994
W13	Lec 25	thermal shape fluctuation in the context of stability	GBR1994
W13	Lec 26	Outlook – Computational Materials Science	

(Supplementary) literature:

R2014: R. Hentschke (2014) *Thermodynamics*. Springer
R2004: R. Hentschke (2004) *Statistische Mechanik*. Wiley-VCH
GT1995: H. Gould and J. Tobochnik (1995) *An Introduction to Computer Simulation Methods: Applications to Physical Systems*. Pearson
I2011: J. Israelachvili (2011) *Intermolecular and Surface Forces*. *Elsevier*EW1999: D.F. Evans, H. Wennerström (1999) *The Colloidal Domain – where Physics, Chemistry, Biology and Technology Meet*. *Wiley*RC2003: M. Rubinstein, R. H. Colby (2003) *Polymer Physics*. Oxford
dG1979: P.G. deGennes (1979) *Scaling Concepts in Polymer Physics*. *Cornell Univ. Press*W2009: C. Wrana (2009) *Introduction to Polymer Physics*. Lanxess
C2000: R. Hentschke, B. Fodi (2000) in *Supramolecular Polymers* (A. Ciferrri, Ed.). Marcel-Dekker
GBR1994: W.M. Gelbart, A. Ben-Shaul, D. Roux (Eds.) (1994) *Micelles, Microemulsions, and Monolayers*. Springer