Problem Set 7
Statistical Mechanics summer 2022

Prof. Dr. R. Hentschke

Bergische Universität Wuppertal

Problem 18: Model ferromagnet revisited
This problem focusses on the same model ferromagnet we had already encountered in problem 14 - but here our approach is different.

We consider the cubic lattice of N sites shown in the graph. Each site is occupied by an arrow pointing up (+1) or down (-1).

The Hamiltonian of this system is given by

$$
\mathcal{H}_{N}=-\frac{J}{2 N} \sum_{i, j} s_{i} s_{j}-B \sum_{i}^{N} s_{i}
$$

$J(>0)$ is the coupling constant of the arrows (elementary magnets or spins if you want) s_{i} and $s_{j} . B$ is an external magnetic field. Note that J does not depend on the distance between s_{i} and s_{j} (mean field approximation!). Therefore the energy of a particular state of this lattice model depends on the total number of arrows pointing up and down, i.e. N_{+}and N_{-}, only. Each combination $\left(N_{+}, N_{-}\right)$can be realized in $N!/\left(N_{+}!N_{-}!\right)$ways (remark: treat all N 's as large, i.e. use Stirling's approximation). Thus the partition function is given by

$$
Q=N!\sum_{N_{+}, N_{-}} \frac{\delta\left(N-N_{+}-N_{-}\right)}{N_{+}!N_{-}!} e^{-\beta E\left(N_{+}, N_{-}\right)} .
$$

(a) Show that Q can be expressed as $Q=\sum_{m} \exp [-\beta N \psi(m)]$. Here $m=\left(N_{+}-N_{-}\right) / N$ is the average 'magnetization' of lattice states characterized by N_{+}and N_{-}. Write down the explicit form of $-\beta \psi(m ; T, J, B)$.
(6 points)
(b) Show that the free energy per arrow (or spin), $-(\beta N)^{-1} \ln Q$, in the thermodynamic limit is given by a term $\exp \left[-\beta N \psi\left(m_{o}\right)\right]$ in the sum over m. Hint: consider the leading correction in a Taylor expansion of $\psi(m ; T, J, B)$ around its minimum at m_{o} and determine the contribution of this correction to $-(\beta N)^{-1} \ln Q$ in the limit $N \rightarrow \infty$. Note that here you do not need the explicit form of $\psi\left(m_{o} ; T, J, B\right)$.
(6 points)
(c) Write down an equation allowing to determine the equilibrium 'magnetization' m_{o}. For $B=0$ provide a sketch in the $(\beta J)^{-1}-m_{o}$-plane, which illustrates how m_{o} can be obtained graphically via the aforementioned (implicit) equation (Remark: you should remember this graph from problem 14). How does the result for m_{o} change when $B \neq 0$.
(3 points)
(d) For $B=0$ show that in the immediate vicinity of T_{c}, i.e. the temperature above which $m_{o}=0$,

$$
\left|m_{o}\right| \propto\left(T_{c}-T\right)^{\beta} \quad \text { for } \quad T<T_{c}
$$

Note that here β is a number (specifically a critical exponent) and not $1 /\left(k_{B} T\right)$! Obtain the numerical value of β.
(3 points)
(e) Comparing this problem with problem 14, which is very similar (aside from $B=0$ throughout problem 14), we conclude that the present approach takes more effort. What is the extra information obtained here justifying this additional effort (remark: the answer has nothing to do with $B \neq 0$)?
(3 points)

Problem 19: Dilute gas in a gravitational field

We consider N point-like, non-interacting masses m (ideal gas) inside a cylindrical container. The axis of the cylinder is parallel to the gravitational field of Earth. The potential energy of the particles is given by $m g z$, i.e. the bottom of the container is at $z=0$.

Using the classical Hamiltonian $\mathcal{H}=\sum_{i=1}^{N}\left(\frac{1}{2 m} \vec{p}_{i}{ }^{2}+m g z_{i}\right)$, calculate the mean energy per particle, $\langle\epsilon\rangle$, via the following two methods:
(a) generalized equipartition theorem
(3 points)
(b) explicit partition function.
(3 points)
In addition
(c) find the normalized energy probability density $p(E)$ for this gas.
(6 points)

