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Introduction to Polymer Physics

- Theoretical Concepts and Applications

Reinhard Hentschke∗

This text is intended for students, predominantly in physics and with a one-semester background in
statistical mechanics, who are about to start their bachelor thesis project or who are past this stage
already. These students may be interested in polymer physics, because they pursue research projects
overlapping with this area of science or because they want to broaden their knowledge in condensed
matter physics in general. If they have followed the regular physics curriculum up to this point, it
is unlikely that they had much exposure to polymer physics. Hence they may be interested in an
overview, without becoming overwhelmed, providing a basis from which to explore more detailed or
advanced textbooks, research papers, and talks.

1 Introductory Remarks

Why should you be interested in polymer physics? One reason
is that polymer materials are ubiquitous and have countless
applications. Hence, a significant amount of research and
development goes into polymer related products, which in turn
means that there are well paid jobs and not only for chemists!
Many physics student don’t know this, because they believe that
polymers are an exclusive domain for chemists. Another reason
why polymer physics is interesting is that problems in polymer
physics require a broad background in physics, including both
classical and quantum physics. There are virtually countless
intellectually challenging questions and answering them never
gets boring. Polymer physics overlaps with the physics of liquids,
colloids and with the physics of surfaces and interfaces. Note
that polymer materials are complex and may contain many com-
ponents which are not polymers - like nanoparticles. There is of
course overlap with chemistry in general and physical chemistry
in particular. Can one make big discoveries in polymer physics?
Most physics students, at least initially, have this dream. Well,
Nobel prizes have been awarded for work in polymer science.
However, since there is not just ´one big mystery´ (like what is
Dark Matter), progress and discoveries are achieved in smaller
increments. But this usually means that earnest intelligent work
will be rewarded with success and recognition - which cannot be
said about the work on ´big questions´.

Virtually all the material compiled in these notes was worked
out long ago and thus can be found in numerous textbooks. How-
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ever, all textbooks, and these notes are no exception, present a
subset of the ’total polymer knowledge’. Sometimes the subset
is larger and sometimes it is more focussed (’less’ sometimes is
indeed ’more’!). But always there is a certain bias due to the au-
thor’s feel at the time of writing of what a student should know.
A serious difficulty when teaching polymer physics are the many
variables, e.g. polymer type and mass, environments like melts,
solvents (good, bad, θ -), gels, networks, etc., temperature, fre-
quency and so on and so forth. This gives rise to a host of results
for numerous combinations of system parameters, mostly power
laws, which can be very confusing for the beginner since no Ari-
adne thread appears to exist in this maze. Clearly, the challenge
is to avoid this confusion without omitting too much important
information.

The current standard textbook on polymer physics is M.
Rubinstein and R. H. Colby Polymer Physics, Oxford University
Press. This book focusses on the theoretical concepts, which does
not mean that there are no experimental results to which the
theory is compared. The opposite is true. However, these well
defined experiments are designed specifically to test abstract
theory. In practice, polymer materials are designed for complex
applications requiring likewise complex materials. This in turn
means that experimental measurements are less ’clear’ and usu-
ally less ’clean’. Understanding an application polymer material
on the molecular level is a very demanding task! It is therefore
interesting to contrast Rubinstein and Colby with another book
written by an application scientist. C. Wrana’s Introduction to
Polymer Physics, Lanxess Company (unfortunately, the english
version is not widely available; there is also a similar, somewhat
older text, by U. Eisele) focusses on the practical side - albeit
for elastomers. Elastomers, the polymer ingredients of rubber
materials, are arguably the ’most physical’ of all polymers. Wrana
concentrates on the viscoelastic properties of elastomer materials
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and their nonlinear deformation behavior from the point of view
of someone working in the elastomer industry. He also includes
a discussion of nano-fillers and their effects on the mechanics of
elastomers. These notes are an attempt to cover and combine key
sections in both texts - nevertheless, bits and pieces from many
other literature sources are included as well (and referenced
throughout the notes). Here I briefly want to mention a mere
few. Two older general textbooks on polymer physics are G.
Strobl The Physics of Polymers, Springer and R. J. Young and P.
A. Lovell Introduction to Polymers. Strobl discusses in particular
many of the basic key measurements. The book by Young and
Lovell is less mathematical and focusses more on synthesis
and polymer characterization as well as on the description of
numerous standard techniques used for characterization. And
then there is one book that every person seriously working in
polymer physics had and probably still has in reach - P.-G. de
Gennes Scaling Concepts in Polymer Physics, Cornell University
Press. The book was first published in 1979, but its elegant
style and timeless ingenuity makes it a valuable source of insight
even to this day. However, I do not recommend it for beginners.
Pretty much the same comment, minus the elegance perhaps,
applies to M. Doi and S. F. Edwards The Theory of Polymer
Dynamics, Oxford Science Publications. However, this book
contains most, if not all, the details, which makes it very valuable
to the advanced student of the subject. There is a less formidable
text by M. Doi alone (Introduction to Polymer Physics, Oxford
Science Publications), which, even though it still is not a text
for beginners, is much easier to read. Written at about the same
time as Doi’s book, Statistical Physics of Macromolecules by A. Y.
Grossberg and A. R. Khokhlov also is not a beginner’s text. Again,
it is of interest for polymer students at a more advanced stage
(e.g., its extensive discussion of phase transitions in polymer
systems). Finally, going still back in time to the 1950s and 1960s,
there are the books by Paul Flory Principles of Polymer Chemistry
and Statistical Mechanics of Chain Molecules. Reading these notes
you will recognise his wide ranging impact on the field. Like the
previous books, I do not recommend them for beginners. But
Flory explains many important aspects of theoretical approaches
in polymer physical chemistry, which the subsequent literature
does not explain with the same amount of detail and insight.
You may want to keep this in mind and when you seem to be
missing a piece of information, hampering your understanding
of a problem in polymer physical chemistry, you should consult
Flory’s books. Both Flory (1974) and de Gennes (1991), by
the way, have received Nobel prizes (Flory in Chemistry and de
Gennes in Physics) for their work on the physical properties of
polymers.

The computer simulation of polymers has made and will con-
tinue to contribute important insights. However, it is very difficult
to develop this aspect of polymer research in notes like these
including a sensible amount of detail. Therefore no such attempt
has been made. Nevertheless, I want to mention some references.
Computer Simulation of Liquids by M. P. Allen and D. J. Tildesley
(Oxford University Press: Oxford (1990)), in my opinion, still
ranks among the best books on the subject of computer simu-

lation for beginners. If somebody wants to try out some basic
simulations fast, then I can offer my Computer Simulation Labo-
ratory (https://constanze.materials.uni-wuppertal.de/fileadmin/
physik/theochemphysik/Skripten/SimTutorial.pdf). Specifi-
cally for polymer simulations one can find a number of texts.
One example is Simulation Methods for Polymers edited by M.
Kotelyanskii and D. N. Theodorou (Marcel Dekker: New York
(2004)). The advanced reader will benefit from Monte Carlo
Simulations in Statistical Physics by D. P. Landau & K. Binder
(Cambridge University Press:Cambridge (2000)). Especially the
second author and his group have made numerous important
contributions to the simulation of polymers, which is reflected in
the book.

A number of colleagues and students have supported my efforts
to present this material in useful fashion - either by providing
general encouragement or by improving specific points or by cor-
recting my mistakes. These people, to whom I am very grateful,
are Nils Hojdis, Frack Fleck, Michael Karbach, Jan Weilert, Lena
Tarrach, ...
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2 Polymers - Microstructure, Classification,
and Mass

2.1 Polymer Microstructure and Classification

The simplest type of polymer is a linear covalent chain contain-
ing one type of monomer i.e. -A-A-A-A-A-A-A-A-. This is a ho-
mopolymer. A few example are compiled in Tab. 1. Not obvi-
ous from -A-A-A-A-A-A-A-A- is that there are possible differences
between this -A-A-A-A-A-A-A-A- and another -A-A-A-A-A-A-A-A-
due to stereoisomerism or structural isomerism. The former is
depicted in Fig.1. An example of structural isomerism is shown
in Fig. 2. Since rotation around the double bond is not possi-
ble polyisoprene, for instance, can locally exist as cis or trans.
How much cis or trans there is depends on how the polymer
was polymerized. Naturally produced PI from rubber trees (he-
vea brasiliensis) is almost completely cis-1,4-polyisoprene. Even
though these stereoisomers or structural isomers do not ’look’
very different, there physical properties are usually quite distinct.
For instance, isotactic homopolymers show the tendency to form
helical structures, whereas their atactic variants do not. Another
example is cis-1,4-polyisoprene, which is used in large quantities
in automobile and particularly in truck tires, whereas trans-1,4-
polyisoprene (gutta-percha) has a strong tendency to crystallize
and today only has a few specialized uses.

Table 1 A few common homopolymers

monomers polymer comments
Ethylene Polyethylene (PE) moulded objects, tubing,

CH2 = CH2 -[ CH2- CH2]n- films, insulation
Propylene Polypropylene (PP) similar uses to PE

CH2 = C(CH3)H -[ CH2- C(CH3)H]n-
Styrene Polystyrene (PS) cheap moulded objects

CH2 = C(C6H5)H -[ CH2- C(C6H5)H]n-
Vinyl chloride Poly(vinyl chloride) (PVC) pipes, hoses,
CH2 = C(Cl)H -[ CH2- C(Cl)H2]n- sheathing on electrical cables

Isoprene cis-1,4-polyisoprene (PI) tires, latex products
CH2 = C(CH3)-CH=CH2 -[CH2 - C(CH3)=CH-CH2]n- sheathing on electrical cables

The combination of several different monomers, as shown in
Fig. 3, yields so called heteropolymers. If the heteropolymer
contains two monomer types it is called a copolymer. Copoly-
mers can be alternating, random, block or graft. Polymers con-
taining two blocks are called diblock copolymers; with three
blocks they become triblock copolymers and then multiblock
copolymers. Polymers containing three types of monomers are
called terpolymers. An example of a biopolymer with four differ-
ent types of monomers (nucleotides) is DNA.

Another distinguishing feature is the polymer architecture.
Fig. 4 shows sketches of (a) linear, (b) ring, (c) star-branched,
(d) H-branched, (c) comb, (d) ladder, (g) dendrimer and (h)
randomly branched polymer architectures. In this text our sole
focus is case (a), linear polymers.

Fig. 1 Tacticities of vinyl polymers. The carbon atoms are in the same
plane, whereas the hydrogens and the R-moieties lie below or above,
respectively.

Fig. 2 Two structural isomers of polyisoprene.

Commonly technical polymers are classified into three groups
as depicted in Fig. 5:

Thermoplastics are linear or branched polymers which can
melt when heated. They can be moulded and remoulded us-
ing processing techniques like injection moulding and extrusion.
They constitute the largest fraction of industrial polymers. Many
thermoplastics are amorphous and are incapable of crystalliza-
tion. Amorphous polymers are characterized by their glass tran-
sition temperature Tg, the temperature at which they transform
from a hard or glassy state to a soft or rubbery state.

If the polymers crystallize this occurs between the glass tran-
sition, Tg and the melting temperature Tm. In this temperature
range, there is sufficient molecular movement for crystalline
domains to form. This process can take place during heating
or during cooling from the melt. The main characteristics of
crystalline polymers is that are normally semi-crstalline. The
size, shape and percentage of crystals depend on the heating and
cooling of the material. The change from the amorphous-liquid
state of the melt to the crystalline state is a kinetically controlled
process and depends primarily on nucleation. This is why the
crystallization temperature Tc is always below the thermodynam-
ically controlled melting temperature (for a detailed discussion
see chapter 4 of R. J. Young, P. A. Lovell Introduction to Polymers
(1991)).

Elastomers are polymer whose response to large deformations
is mostly elastic over a wide range of temperatures. This range
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Fig. 3 Different types of polymers. Figure adopted from Rubinstein and
Colby.

Fig. 4 Examples of polymer architectures ((a) linear, (b) ring, (c) star-
branched, (d) H-branched, (c) comb, (d) ladder, (g) dendrimer and (h)
randomly branched). Figure 1.5 from Rubinstein and Colby.

is bracketed by Tg on the low side and the thermal degradation
on the high side. Elastic response to deformations is greatly
enhanced by cross-linking of the polymers, which largely pre-
vents them from ’flowing’ in response to the deformation. Such
materials are commonly known as rubbers.

Since we just mentioned ’cross-linking’. What is a cross-link?
A chemical cross-link consists of a certain number -usually in
the single digits- of covalent bonds joining two polymer chains
or, since polymers are flexible and long, form a link within one
and the same polymer chain. A famous example is the formation
of sulfur (atom) bridges in a reaction called vulcanisation. The
second type of cross-link is the physical cross-link. Polymers
are mostly like ’entangled ropes’. These entanglements are
hairpin-style curves of one polymer around another or one
polymer section around another section of the same polymer.
The density and the nature of the cross-links is one of the most
important parameters determining the physical behavior of
polymer systems.

Thermosets normally are rigid materials and are highly
cross-linked polymers. Like elastomers they are intractable once
formed and degrade rather than melt when heated.

This classification schema is not absolute and possess a certain
degree of overlap between the three groups.

Fig. 5 Polymer classification.

When we look at polymers from the perspective of statistical
thermodynamics, they possess one particular feature - conforma-
tion entropy, distinguishing them from simple liquids or solids. A
chain of monomers, even a short one between cross-links or other
branch or terminal points, can have many different shapes. The
number of possible shapes or ’paths’ give rise to the conforma-
tion entropy of the chain. This entropy wants to be a large as
possible. A constraint imposed on the number of possible chain
conformations reduces the conformation entropy and produces
forces acting along the entire chain and beyond. This long range
effect in conjunction with liquid-like interactions produces unique
structural and dynamic material properties.

2.2 Molecular Mass Distribution
When discussing the polymer microstructure we had stated that
two chemically identical polymers can still be very different when
they are isomers. Another distinguishing parameter is mass. Na-
ture can make biopolymers with a specific mass. Technical poly-
mers, however, are more or less polydisperse, i.e. they possess a
certain mass distribution. The number-average molar mass M̄n

is defined via

M̄n = ∑
i

xiMi . (1)

The index i indicates the fraction of polymers in the sample con-
taining Ni molecules of molar mass Mi. The quantity xi is the mole
fraction of these polymers, i.e.

xi = Ni/∑
j

N j . (2)

A related quantity is the weight-average molar mass M̄w de-
fined via

M̄w = ∑
i

wiMi , (3)

where

wi = NiMi/∑
j

N jM j . (4)
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There are still other average masses - but just M̄n and M̄w alone
may be confusing. What is the difference between them?

Note that xi is the probability to pick any polymer from group
i at random, whereas wi is the probability to pick any monomer
from within any polymer in this group. These probabilities can
be very different. Imagine 3 identical light and one heavy poly-
mer all made of the same type monomer. If i = 1 stands for the
light polymer then x1 = 3/4. If we now cut the light polymers in
half and add the monomers which we have cut off to the heavy
polymer - what changes? Well, x1 is still 3/4, but w1 is only half
of what it was before (Note: Even though xi does not change,
M̄n changes during this ’experiment’.). The only time xi = wi is
when there is only one group or one term in ∑i, i.e. all poly-
mers possess the same mass, i.e. they are monodisperse. In this
case M̄w/M̄n = 1.0. Hence, we introduce xi and wi as a means
to determine polydispersity. We can see this more clearly via the
following equation

M̄w = M̄n +
δM̄2n

M̄n
. (5)

Here δM̄2n = M̄2n− (M̄n)
2 is the variance of the mass computed

with the distribution (2) (the derivation is left to the reader as an
exerecise). Typically M̄w/M̄n is in the range 1.5-2.0. But how do
we measure these different molar masses?

The osmotic pressure Π of polymers in solution in the limit of
vanishing polymer concentration c (usually in g/volume) is given
by van’t Hoff’s law:

Π

c
=

RT
M̄n

. (6)

A formula for Π in polymer solutions will be discussed in chapter
4. However, we can already see that Π involves M̄n rather than
M̄w. Had we performed the above ’thought experiment’, which
does not alter the number of polymers, in the polymer solution,
it would not have altered Π, since the osmotic pressure in van’t
Hoff’s law depends only on the polymer concentration and not
on the distribution of monomers across the polymer population.
Figure 6 shows the concentration dependence of the osmotic pres-
sure of poly(α-methyl styrene) for different molecular weights in
toluene. Based on the figure estimate M̄n for the three upmost
curves. Note that the unit of osmotic pressure in this case is g
cm−2. Compare your numbers to the numbers in table 1 of I.
Noda et al. Thermodynamic Properties of Moderately Concentrated
Solutions of Linear Polymers Macromolecules 16, 668 (1981).

And how do we measure M̄w? One good method is static light
scattering. Why is this? Let us assume that unpolarized light,
possessing the wavelength λ , interacts with an isolated isotropi-
cally polarizable molecule. Within the molecule a dipole moment
~p = α~E(ω) is induced by the local ~E-field. Here α is the isotropic
polarizability of the molecules, ω = 2πc/λ , and c is the speed of
light. Remember now the discussion of dipole radiation from your
E&M-lecture. The pointing vector ~S, measuring electromagnetic
energy per area and time in a certain direction, which essentially
is our scattered intensity, is given by

Fig. 6 Concentration dependence of the osmotic pressure of poly(α-
methyl styrene) for different molecular weights in toluene at T = 25oC
from I. Noda, N. Kato, T. Kitano, M. Nagasawa Thermodynamic Prop-
erties of Moderately Concentrated Solutions of Linear Polymers. Macro-
molecules 16, 668 (1981).

~S =
1

4πr2c3 (~̈p×~n)
2~n (7)

in the case of dipole radiation. Here r is the distance between
the dipole and the detector and ~n is a unit vector in the direction
from the dipole to the detector. The double dot indicates time
derivatives. We also remember that the magnitude of the Pointing
vector (at the position of the molecule) is Sin = cE2/(4π). Now
we can write down the Rayleigh ratio Rθ , which is the scattered
intensity times r2 divided by the incident intensity, i.e.

Rθ =
16π4

λ 4 α
2
ρP(θ) , (8)

where

P(θ) = 〈(~ep×~n)2〉~ep . (9)

The quantity~ep is a unit vector in ~p-direction. In addition, 〈. . .〉~ep

is an orientation average of the dipole vector and we have used
Ë = ω2E. The factor ρ is an average number density of isolated
molecules, which we insert here since we want to collect intensity
from 〈N〉 molecules per volume V , i.e. ρ = 〈N〉/V . Here 〈. . .〉 is a
thermodynamic average of the (in principle) fluctuating number
of molecules.

If we define the direction of the incident light as our z-
direction, then ~ep = (cosϕ,sinϕ,0), i.e. ~ep is in the xy-plane.
Note that the components of the ~E-field, and therefore the com-
ponents of the induced dipole, are perpendicular to the direc-
tion in which the light travels. In the same coordinate system
~n = (cosφ sinθ ,sinφ sinθ ,cosθ). With this we find
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P(θ) = (cos2
θ +1)/2 . (10)

However, we are not so much interested in isolated molecules.
Instead we are interested in a dilute solution of our polymers in a
solvent. If εo is the dielectric constant of the pure solvent and ε1 is
the dielectric constant of the solution we have (εo−1)/(4π)~E = ~Po

and (ε1−1)/(4π)~E = ~P1, where ~E is the average electric field and
the polarization ~P is the local dipole moment per unit volume.
Subtracting the two equations yields (4π)−1(ε1−εo)~E = ∆~P. Note
that V ∆~P replaces or previous ~p when the molecules were isolated
(cf. Debye’s 1947 cited below!). We now write

ε1− εo

4π
=

n2
1−n2

o
4π

≈ 1
4π

2no
dn

dcw

∣∣∣
o
cw . (11)

The quantities n1 and no are the refractive indices of the solution
and the solvent, respectively. Note that we expand n1(cw)

2, where
cw is the solute weight concentration, in terms of cw around no.
With this the Rayleigh ratio becomes

Rθ =

(
2π

λ

)4 1
(4π)2

1
V

(
2no

dn
dcw

∣∣∣
o

)2
c2

wV 2P(θ) . (12)

Aside from the above replacement of the molecular dipole mo-
ment ~p by V ∆P we have also replaced ρ by 1/V . The average
number of molecules 〈N〉 now becomes the average number of
polymers in the system 〈ν1〉 and, as we shall see, 〈ν1〉 is con-
tributed by a new version of P(θ).

The overall solute mass density cw can be rewritten in terms of
an integral over the local solute mass densities cw(~r) throughout
the system, i.e.

cw =
1
V

∫
V

d3r cw(~r) . (13)

Thus far P(θ) only accounts for radiation without interference of
radiation from the different volume elements of the system. This
means we need another substitution, i.e.

c2
wP(θ)→ 〈cw〉2Pi(θ)≡

〈cw〉2

V 2

∫
V

d3r d3r′ei~q·(~r−~r ′) 〈cw(~r)cw(~r ′)〉
〈cw〉2

. (14)

Here ~q =~kout −~kin is the momentum transfer from the incoming
wave vector~kin to the scattered one~kout , i.e. we keep the phases of
~Ein(~r) and ~Eout(~r) and let them interfere. The above corresponds
to the 1st Born approximation in quantum scattering theory. Note
that we collect scattering intensity from many thermodynamically
identical copies of our system of interest. Hence our final Rθ is a
thermal average over such systems, i.e.

Rθ = K〈cw〉MPi(θ)〈ν1〉 , (15)

where M is the polymer mass, i.e. 〈cw〉= M〈ν1〉/V , and

K =
4π2n2

o
λ 4

(
dn

dcw

∣∣∣
o

)2
. (16)

These expressions for Rθ and K go back to work by Ein-
stein (Theorie der Opalenszenz homogener Flüssigkeitsgemischen in
der Nähe des kritischen Zustandes Annalen der Physik 33 1275
(1910)) and Debye (Molecular weight determination by light scat-
tering J. Phys. Chem. 51 18 (1947)). The derivation of K is not
trivial -the above is a mere sketch!- and initially there was even

controversy regarding the exact form of the factor n2
o

(
dn
dcw

∣∣
o

)2

(see P. M. Doty, B. H. Zimm, H. Mark An investigation of the deter-
mination of molecular weights of high polymers by light scattering
J. Chem. Phys. 13, 159 (1945); first column on page 160).

Thus far we have considered monodisperse molecules. What
happens if the molecules are polydisperse? In this case cwM is
replaced by ∑i cw,iMi, i.e.

cwM→∑
i

cw,iMi =
∑i cw,iMi

∑cw,i
cw = M̄wcw , (17)

where ci = NiMi/V and cw = ∑i cw,i. Hence,

Rθ = K〈cw〉M̄wPi(θ)〈ν1〉 , (18)

relates the light scattering intensity to the weight-average (molar)
mass (note that there is no mass dependence left in Pi(θ)). We
shall come back to scattering and to Eq. (18) in chapter 2. In
particular we shall discuss the evaluation of Pi(θ) in detail.

Of course there are other techniques for measuring molar
masses as well, which we must bypass at this point. A overview is
the paper by S. E. Harding et al. Molecular weight determination of
polysaccharides. Advances in Carbohydrate Analysis 1, 63 (1991).
Another nice review covering light scattering is P. J. Wyatt Light
scattering and the absolute characterization of macromolecules. An-
alytica Chimica Acta 272, 1 (1993). Remark: If you want infor-
mation regarding a particular technique, e.g. light scattering, it
is often a good idea to check out the webpages of the companies
selling this particular experimental equipment. Typically you can
find ’technical glossaries’, learning pages’, etc. containing very
good, albeit simplified, explanations of the method and the un-
derlying theory.

We shall also skip over the shape of the mass distribution since
it depends on the polymerization mechanism - a topic we do not
cover here.

3 Equilibrium Conformation of Single
Chains

3.1 Flexibility Mechanism and Polymer Dimension

A quantity used to characterise the linear dimension of a polymer
chain is its end-to-end vector ~R, which is the sum over monomer
end-to-end vectors~b (cf. Fig. 7). The monomer end-to-end vector
may itself be a sum over a number of shorter vectors within the
flexible monomer as shown in the example in Fig. 8. Having
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Fig. 7 Examples (cartoon!) of a linear homopolymer chain based on
the monomer unit -CH2-CHR, where R stands for different moities (three
examples are shown: polyethylene, polystyrene and polyvinylpyrrolidone).
Note that ~R (not to be confused with the previous letter R) is the end-
to-end vector, which itself is a sum over monomer vectors ~b.

Fig. 8 Monomer unit of p-PHB (poly(4-hydroxybenzoic acid)). The φi
are valence angles, whereas the ϑi are torsion angles.

said this we want to concentrate on the simplest case, i.e. in
the following the mathematical realization of a polymer chain is
merely a sum over bond vectors ~bi of constant magnitude b as
depicted in Fig. 9

But what do we mean by ’flexibility’ in this context? Fig. 10
shows four covalently bonded atoms i, j, k, and l. The bond
lengths are pretty much constant and so are the valence angles,
i.e. the angles between the bonds ij and jk or jk and kl. But when
the bond jk is a single bond, then the angle ϑ , which is called
torsion angle, is variable. A polymer contains a large number of
these torsion angles, which allow the polymer chain to assume
many different conformations. Loosely speaking flexibility is
a measure for the decrease of orientation correlation of two
vectors ~bi and ~bi+s along a polymer chain as function of their
separation s. In other words, rotational freedom of the torsion
angles diminishes orientational correlation between ~b-vectors
and thus increases chain flexibility.

Fig. 9 Cartoon of a linear polymer consisting of N units.

Fig. 10 Definition of a torsion angle via four successive atoms.

Under these conditions, i.e. fixed bond lengths and fixed va-
lence angles while the torsion angles can freely vary, what is the
largest end-to-end distance Rmax? Let’s look at Fig. 9 and assume
that all bond lengths bi and valence angles φi are constant, i.e.
bi = b and φi = φ ∀ i. If we flatten our polymer onto a planar
surface, we obtain the largest end-to-end distance for a straight
zig-zag line. The projection of each bond onto the direction de-
fined by this zig-zag line is bcos((π−φ)/2) and the overall length
of the zig-zag line therefore is

Rmax = bcos((π−φ)/2)N = bsin(φ/2)N . (19)

This length, i.e. the maximum magnitude of the end-to-end
vector, is also called the contour length L of the polymer, i.e.
L = Rmax.

In these notes contour length is defined dependent on the
type of flexibility mechanism. In the present case this means
that measuring contour length along the bonds of the polymer
backbone yields a greater length, i.e. bN.

While a polymer only has one contour length, it can assume
many different conformations and consequently the magnitude
(and direction) of its end-to-end vector varies. Therefore we focus
on statistical averages of the powers of ~R. Obviously

〈~R〉= 0 , (20)

i.e. this average does not tell us much. However, 〈~R2〉 6= 0 and

since
√
〈~R2〉 possess the unit of length we are going to use it as

measure for the linear dimension of a polymer in space.
So let’s study the end-to-end vector depicted in Fig. 9 in more

detail, i.e.
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~RN =
N

∑
i=1

~bi = b
N

∑
i=1

~ei . (21)

Note that the ~ei are unit vectors. The quantity we are most inter-
ested in is the average of the square of ~RN . It essentially describes
the spatial extension of a polymer chain. Hence

〈~R2
N〉= b2

N

∑
i=1

N

∑
j=1
〈~ei ·~e j〉= b2

(
1+

2
N

N

∑
i> j
〈~ei ·~e j〉

)
N . (22)

The correlation function 〈~ei ·~e j〉 is quite difficult to calculate in
general. It depends not only on i− j but on i and j explicitly,
since the middle of a polymer is different from its ends.

Let’s therefore consider two simple approximations. The first
one is 〈~ei ·~e j〉 = 0 (i 6= j), i.e. the orientation of ~ei does not influ-
ence ~e j in the slightest. This defines a freely jointed chain. In
this case

〈~R2
N〉= b2N . (23)

This result has the familiar form of the Einstein law of diffusion

〈~R(t)2〉= 6Dt . (24)

Here ~R(t) is the vector connecting the starting and the end point
of a random walk in three dimensions (3D) measured at time t
after the walker has started and D is the (long time) diffusion
coefficient. Note that the time t is the equivalent of N. In other
words, a polymer chain is just a random walk.

The second approximation is the straight zig-zag chain which
we used to calculate Rmax. Here 〈~ei ·~e j〉 = 1 if i− j is even and
〈~ei ·~e j〉 = cos(π − φ) if i− j is odd. Hence ∑

N
i> j〈~ei ·~e j〉 = N(N −

1)/2 · (1− cosφ)/2 and thus

〈~R2
N〉= b2 sin2(φ/2)N2 , (25)

where we assume that N is large. Note that (25) is consistent
with (19).

A generalization of Eq. (23) is

〈~R2
N〉=CNb2N2ν . (26)

In Eq. (23) the coefficient CN equals 1 and the exponent ν equals
1/2. This value of ν characterizes an ideal chain. When we do
not make the above approximation 〈~ei ·~e j〉 = 0 the coefficient CN

will be larger than one, because non-vanishing correlations make
the chain locally stiffer and therefore the volume of the ’coil’,
i.e. 〈~R2

N〉3/2, larger. In this context CN is called characteristic
ratio - even though in most cases this refers to the limit N → ∞.
However, since N does not have to be larger than O(10) in order
for CN to be close to C∞ this is not important for most practical
purposes. Whether or not the exponent ν also changes depends
on the range of the correlation function 〈~ei ·~e j〉. We shall return
to this point below.

Fig. 11 Coordinate systems of two successive bonds.

The leading approximation of 〈~R2
N〉 which takes the angles φ1,

ϑ1, φ2, ϑ2, . . . (cf. Fig. 9) into consideration is the following:

〈~ei ·~e j〉 = 〈
(

1
0
0

)
Π

i−1− j
k=0 T j+k→ j+k+1

(
1
0
0

)
〉

≈
(

1
0
0

)
〈t〉i− j

(
1
0
0

)
. (27)

What does this mean? In the first equation each of the two unit
vectors ~ei and ~e j are considered unit vectors along the respective
x-axes of their own ’private’ coordinate systems. The projection
of ~e j onto the direction of ~ei is then handled in a series of i− j
steps or rotations of the coordinate system of ~e j onto the coordi-
nate system of~ei. The average is over a matrix T that contains all
angle φ and ϑ between monomers i and j. The second equation
assumes that all steps are statistically independent, i.e. the aver-
age of a product of rotation matrices becomes the product of i− j
identical average single step rotation matrices t. This is a strong
approximation - but it simplifies matters considerably. Note that
different monomers may be correlated despite this approxima-
tion. This is because a monomer’s orientation is coupled to the
orientation of its predecessor if for instance either the bond angle
φ or the torsion angle ϑ (or both) is fixed or limited to a sector
of the full solid angle. Nevertheless, for an ’observer’ on the pre-
decessor monomer, any average involving functions of φ and ϑ ,
defining the orientation of the following monomer, are indepen-
dent of the position of the predecessor along the chain. This also
implies that monomers in the middle of the chain are no different
from those near the chain ends.

So how do we find t? Fig. 11 shows two successive vectors~bi

and ~bi+1 along the x-axes of their coordinate systems. Let’s say
we are looking at this from within the xyz-system and we want to
rotate~bi+1 so that it becomes parallel to the x-axis. Thus we first
(1) rotate~bi+1 with respect to the x-axis by the angle −ϑ (omit-
ting the index i) and then (2) we rotate the resulting ~bi+1 with
respect to the z-axis until it is aligned with the x-axis. This angle
of rotation is π − φ (also omitting the index i). Mathematically
this is accomplished by the the product of two rotation matrices:

8 | 1–91 



 −cosφ sinφ 0
−sinφ −cosφ 0

0 0 1


︸ ︷︷ ︸

(2)

 1 0 0
0 cosϑ −sinϑ

0 sinϑ cosϑ


︸ ︷︷ ︸

(1)

(28)

Note that this is not yet t. Two things must be done. First, what
we want is the inverse the above matrix. In addition, we want to
rotate coordinate systems rather than vectors within them. This
mean we must replace ϑ by −ϑ and φ by −φ . The resulting t is
given by

t =

 −cosφ sinφ 0
−sinφ cosϑ −cosφ cosϑ −sinϑ

−sinφ sinϑ −cosφ sinϑ cosϑ

 . (29)

The average 〈t〉 is given by

〈t〉=

 −cosφ sinφ 0
−sinφ〈cosϑ〉 −cosφ〈cosϑ〉 −〈sinϑ〉
−sinφ〈sinϑ〉 −cosφ〈sinϑ〉 〈cosϑ〉

 , (30)

where we assume that φ is a constant angle.
Next we insert the approximation (27) into Eq. (22) and eval-

uate ∑i> j〈t〉i− j:

∑
i> j
〈t〉i− j = (N−1)〈t〉+(N−2)〈t〉2 + · · ·+(N−N)〈t〉N(31)

= N
N

∑
i=1
〈t〉i−

N

∑
i=1

i〈t〉i

= N〈t〉(I−〈t〉)−1−〈t〉(I−〈t〉N)(I−〈t〉)−2

≈ N〈t〉(I−〈t〉)−1(for large N) .

In the limit of large N the final result is

〈~R2
∞〉=C∞b2N (32)

with

C∞ =
I+ 〈t〉
I−〈t〉

∣∣∣
11

, (33)

where the subscript 11 indicates the matrix element. When
〈sinϑ〉= 0, i.e. the torsion potential is symmetric, this expression
simplifies to

C∞ =
(1− cosφ)(1−〈cosϑ〉)
(1+ cosφ)(1+ 〈cosϑ〉)

. (34)

Fig. 12 shows a number of examples for CN and C∞ calculated
at various levels of approximation. The dotted line in the top
panel is the freely jointed chain for which, according to Eq. (23),

CN = 1. The dashed line in the same panel is for a freely rotat-
ing chain for which the angle between bonds is φ = 112o (corre-
sponding to the C-C-C valence bond in polyethylene (PE)). Since
〈cosϕ〉 = 0 in this case, Eq. (34) yields C∞ ≈ 2.2. However, the
figure also shows that CN increases with N. The N-dependence
shown here follows if we include the correction terms in the sum-
mation (31) and not just the limit N → ∞. The solid lines in the
two panels are calculated using

〈cosϑ〉=
∫ 2π

0 dϑ cosϑ exp[−βutorsion(ϑ)]∫ 2π

0 dϑ exp[−βutorsion(ϑ)]
. (35)

Here β = 1/(kBT ). The torsion potential utorsion is modelled via
an empirical potential energy describing butane (W.L. Jorgensen,
J.D. Madura, C.J. Swenson JACS 106, 6638 (1984)), i.e.

utorsion ≡ uB = 355.1(cos(ϑ)+1) (36)

−68.21(1− cos(2ϑ))+791.6(cos(3ϑ)+1) .

As before φ = 112o. The potential (36) is depicted in Fig. 13.
Note the three pronounced minima. The one in the middle
(trans) occurs when the C-Atoms form a flat zig-zag in the plane.
The other two minima are called gauche minus und gauche plus.
Note that for this type of hindered rotation C∞ is significantly
larger than before. However, this depends on temperature.
Increasing T let the PE models approach the limit of the freely
rotating chain. There is one more line, the long-dashed line,
in the bottom panel of Fig. 12. Its calculation is based on an
approximation which takes into account the coupling between
successive torsion angles. We shall discuss this approximation
below.

Aside from the contour length L and the mean square end-to-
end distance 〈R2

N〉 there are two additional lengths, which are
mentioned with equal frequency in the context of polymer chain
conformations. The first is the Kuhn length κ, which is defined
via

κ n = L = bsin(φ/2)N (37)

and

κ
2 n = 〈R2〉=C∞b2N . (38)

This means that a chain is made of n freely jointed (i.e. 〈~ei ·~e j〉=
0) straight elements, each one Kuhn length long, which possess
the same contour length and the same mean-square end-to-end
distance than our polymer chain consisting of N monomers of
length b. Note that N is considered large and thus CN is replaced
by C∞. Hence

κ =
C∞

sin(φ/2)
b . (39)
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Fig. 12 Top: CN vs. N for various chain models. Bottom: Temperature
dependence of C∞.

Fig. 13 The torsion potential uB (in units of Kelvin) modelled on the
basis of the butane molecule.

Since C∞ usually is between 5 to 10 and sin(φ/2) is between 0.8
and 1, κ corresponds to several monomers.

The second length is the persistence length P. There are poly-
mers, for instance helical ones (like DNA), whose flexibility can-
not be described by rotations around bonds. Their conformations
are better described by homogeneous bending of the helical back-
bone as illustrated by the example in Fig. 14. The polymer is
described as a smooth curve in space whose local orientation is
defined by tangent vectors ~t along this curve. The correlation
function 〈~t(i) ·~t( j)〉 is given by

〈~t(i) ·~t( j)〉= exp(−b|i− j|/P) , (40)

which defines P (we shall return to this equation and its deriva-
tion in section 6.3). Here b is a certain suitable unit of length, e.g.
the rise of the helix per turn, and i and j are integers, enumerat-
ing the turns of the helix. The contour length of such polymer is
L = bN, where N is the number of turns of the helix.

Fig. 14 Illustration of a poly(γ-bebzyl-L-glutamate) (PBLG) molecule
as a homogeneously bend-elastic rod. PBLG is a helical polypeptide
enveloped in benzene-terminated side chains for better solubility. Here
~t(0) and~t(s) are unit tangent vectors, separated by the distance s, along
the helical backbone of PBLG.

Note that (40) is a special case of (27). Again t is given by (29).
But now 〈sinϑ〉=〈cosϑ〉 = 0. In addition, the angle θ defined
via ~t(i) ·~t(i+ 1) = cosθ is related to φ via θ = π − φ . Since θ is
very small we use the approximations 〈sinφ〉 = 〈sinθ〉 ≈ 0 and
−〈cosφ〉= 〈cosθ〉 ≈ 1− 1

2 〈θ
2〉. Hence

〈t〉 ≈

 1− 1
2 〈θ

2〉 0 0
0 0 0
0 0 0

 (41)

and

〈~t(i) ·~t( j)〉=
(

1− 1
2
〈θ 2〉

)|i− j|
= exp(−b|i− j|/P) , (42)

where

P = 2b/〈θ 2〉 . (43)

Let’s compute 〈~R2
N〉 via Eq. (22) replacing 〈~ei ·~e j〉 with 〈~t(i) ·

~t( j)〉. The double sum becomes

∑
i> j
〈~t(i) ·~t( j)〉=

N

∑
i> j

qi− j = N
q

1−q
−q

1−qN

(1−q)2 , (44)

where q≡ exp(−b/P)< 1. If we concentrate on the large N limit,
i.e. we neglect the second term on the right, then

〈~R2
N〉= b2 1+q

1−q
≈ 2LP . (45)

Note that b� P and therefore q ≈ 1− b/P. Since in the case of
the Kuhn length our result was 〈~R2〉= Lκ, we may conclude

κ = 2P . (46)

This result is not really a deep interconnection between the Kuhn
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length and the persistence length. It merely reflects the fact that
independent of the flexibility mechanism, i.e. rotation around
bonds or continuous bending, an ideal chain becomes a random
path if its contour length is much longer than a certain character-
istic length - and different characteristic length are related.

The above type of chain usually is referred to as wormlike
chain and sometimes as persistent flexible polymers. Contrary
to the freely jointed chain, however, which ceases to be useful in
the limit L ∼ κ, i.e. when it is so short that its contour length is
roughly its Kuhn length, the wormlike chain, which is then called
semi-flexible rather than wormlike, has numerous applications in
the corresponding limit L ∼ P. This is because persistent flexible
polymers in solution may undergo orientation phase transitions,
e.g. from an isotropic phase to a nematic phase, dependent on
concentration. How this particular lyotropic liquid crystalline
phase transitions depends on the ratio L/P is discussed in a
nice paper by T. Odijk [Macromolecules, 1986, 18, 2313]. In
addition it is worth mentioning that there are important classes
of such polymers which are not helical polypeptides. Examples
are non-covalent assemblies of globular proteins like sickle cell
haemoglobin or actin into superstructures. Tobacco mosaic virus
is another such assembly. These self-assembled polymers are rod-
like, i.e. their persistence length is comparable or larger than
their contour length. We shall discuss lyotropic liquid crystalline
polymers in section 6.3.

3.2 Statistical Thermodynamics of Single Chains

The conformational partition function of a polymer chain is given
by

Q = ∑
p

exp[−βU(p)] . (47)

Here p is an index identifying a particular chain conformation,
i.e. the sum extends over all possible conformations of the
chain. In practice p is replaced by the cartesian coordinates of
the chain’s atoms or by the internal coordinates (bonds lengths,
valence and torsion angles. U is the potential energy of the chain
and β = (kBT )−1. For an arbitrary potential energy the evaluation
of the sum is very difficult. Here we focus on two summation
methods, each of which is based on certain approximations of
U . The first method, the transfer matrix method, is mainly
used to calculate chain properties like its characteristic ratio
or its scattering structure factor based on a chemically realistic
representation of the monomer units. The second method, the
self consistent field method, is useful for the computation of
the configurational chain properties if the chain is interacting
with an external field (e.g. the density profile of an adsorbed
chain) or if the field represents self-interaction of the chain.

Rotational Isomeric State Model and Transfer Matrix Method:

The transfer matrix method assumes that U includes the inter-
nal potential energy of the monomers individually plus the cou-
pling of neighboring monomers. It is also assumed that the rel-
ative orientation of a monomer with respect to its neighbors is

well described by a small number of discrete (torsion) angles. We
discuss the method based on the simple example of the polyethy-
lene (PE) chain with fixed bond lengths and fixed valence angles,
i.e. different conformations are entirely due to the variable C-C-
torsion angles ϑ . The conformation potential energy in this case
is

U =
N

∑
i=1

u(ϑi,ϑi+1) =
N

∑
i=1

(
uB(ϑi)+uP(ϑi,ϑi+1)

)
. (48)

The meaning of this is explained in Fig. 15. Each monomer is
defined via a torsion angle ϑ , which in turn is defined by four C
atoms or four methylene units respectively (cf. Fig. 10). Note
that n-butane contains four carbons bonded like this and thus the
superscript B. uB is the same as utorsion in Eq. (36). The coupling
of adjacent monomers arises due to the interaction of the methy-
lene units 1 and 5 in the figure, possessing the separation R4.
This coupling often is referred to as pentane effect and thus the
superscript P. Here the rotational isomeric state (RIS) approx-
imation is the assertion that every torsion angle assumes one of
three discrete values called g− (gauche minus), t (trans), and g+
(gauche plus). For the moment this is sufficient.

Fig. 15 PE model

Figure 16 illustrates how we can use the three torsion angle
values to express each conformation as a path on a lattice whose
rows are ϑg− , ϑt , and ϑg+ and whose columns are numbered
according to the torsion angles along the chain. By translating
each line connecting two dots into a Boltzmann factor we obtain
a product of N Boltzmann factors for each conformation, where N
is the number of torsion angles along the chain. The subsequent
summation over all distinct paths, i.e. products, yields Q.

However, there is a much simpler method. This method is il-
lustrated in Fig. 17. For the sake of transparency we assume
that every torsion angle can be in one of two states, i.e. 1 and
2 (e.g. ϑg− and ϑg+). In addition the current chain consists of
three monomers only. Now consider two 2× 2 ’transfer ma-
trices’ a and b. For instance, the element a11 means that this
matrix element takes us from the first monomer/torsion angle in
the chain, which is in state 1, to the second monomer/torsion
angle in the chain, which is in state 1 also. Analogous, the ele-
ment b12 means that this matrix element takes us from the second
monomer/torsion angle in the chain, which is in state 1 again, to
the third monomer/torsion angle in the chain, which is in state 2.
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1 2 3 4 N-2 N-1 N

ϑg-

ϑ t

ϑg+ path 1
path 2

e-βu12 (t,t)e-βu23 (t,g+)e-βu34 (g+,g-)...

e-βu12 (t,g+)e-βu23 (g+,g-)e-βu34 (g-,t)...
+ all paths

= Q

Fig. 16 Q as a sum over different paths defined by the torsion angles
along the chain. Two paths, one green and one red, are shown. At the
bottom we see their (partial) representation as Boltzmann factors in the
partition function.

This particular path is the upper one of the two red paths starting
both in state 1 and ending both in state 2. Thus, every element of
the product matrix ab is the mathematical representation of two
paths starting at one particular state and ending in the same or
in the other state (cf. the diagrams depicted in the lower right
of Fig. 17). Thus, we need to figure out what the transfer ma-
trices are in the case of PE, take their N-product, and then add
up the elements of this matrix. This does not sound like a real
simplification - or does it?

Fig. 17 Paths expressed via products of two 2×2 ’transfer matrices’ a
and b.

We begin by rewriting Q as follows

Q = ∑
ϑ1,ϑ2,...,ϑN

exp

[
−β

N

∑
i=1

(
uB(ϑi)+uP(ϑi,ϑi+1)

)]

= ∑
ϑ1,ϑ2,...,ϑN

exp
[
−β
(1

2
uB(ϑ1)+uP(ϑ1,ϑ2)+

1
2

uB(ϑ2)
)]

×exp
[
−β
(1

2
uB(ϑ2)+uP(ϑ2,ϑ3)+

1
2

uB(ϑ3)
)]

. . .

×exp
[
−β
(1

2
uB(ϑN−1)+uP(ϑN−1,ϑN)+

1
2

uB(ϑN)
)]

×exp
[
−β
(1

2
uB(ϑN)+

1
2

uB(ϑ1)
)]

.

Note that all factors, save for the last one, are of the form

Ti j = exp
[
−β
(1

2
uB(ϑi)+uP(ϑi,ϑ j)+

1
2

uB(ϑ j)
)]

. (49)

The last factor contains no coupling term (If it did, the chain
would form a loop as depicted in Fig. 4 (b).) and thus has the
form

To,i j = exp
[
−β
(1

2
uB(ϑi)+

1
2

uB(ϑ j)
)]

. (50)

The indices i and j label the isomeric states gi, t, and g+ in the two
neighboring monomers. Hence the corresponding matrix T has
the same meaning as the above matrices a and b. The meaning of
To is analogous - except for one peculiar twist.

The example in Fig. 17 taught us to work out the product
TN−1To and then compute the sum over all elements to obtain
Q. But the example also included paths which start in one state
and end in another. This is not true now. Due to the specific way
in which we have rewritten Q, specifically the splitting of the fac-
tor exp

[
−βuB(ϑ1)

]
, every path ends in the same state from which

it started! If we only include such paths in the example in Fig.
17 this mean that instead of summing over all elements of ab we
only sum over the elements along the diagonal of ab, i.e. we cal-
culate the trace Tr(ab) - and the trace has very useful properties.
Here this means

Q = Tr(TN−1To) , (51)

which actually is quite easy to calculate.
Let us assume that T can be diagonalized, i.e.

S−1TS =

 λ> 0 0
0 λ< 0
0 0 λ<<

≡ D , (52)

where SS−1 = I and I is the unit matrix. Hence

Q = Tr(TN−1To) = Tr(TSS−1TSS−1 . . .SS−1ToSS−1)

= Tr(S−1TSS−1TSS−1 . . .SS−1ToS)

= Tr(DN−1T̃o)

Q = λ
N−1
> T̃o,11 +λ

N−1
< T̃o,22 +λ

N−1
<< T̃o,33 , (53)

where

T̃o = S−1ToS . (54)

Note that the second equation follows via the cyclic permutation
of S−1 from left to right, which is one of the useful properties
of the trace. With this the (reduced) conformation free energy
βF =− lnQ of the chain becomes

βF =− ln
(

λ
N−1
> T̃o,11 +λ

N−1
< T̃o,22 +λ

N−1
<< T̃o,33

)
. (55)
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Let’s briefly discuss our notation, i.e. the subscripts >, < and
<<. There is a mathematical theorem, the theorem by Perron-
Frobenius, which states the following: Let A be positive N×N
matrix, i.e. Ai j > 0 ∀ i, j. This A possess a real, non-degenerate
eigenvalue λ> and λ> > |λk|, where the index k enumerates all
other eigenvalues. Here k =<,<<, without implying any particu-
lar order of these eigenvalues.

Hence we may write the free energy as a sum over three con-
tributions (for sufficiently large N)

βF =−N lnλ>− ln
T̃o,11

λ>
+O(e−(N−1)/ξ ) . (56)

The first term on the right hand side is the bulk limit dominating
for large N. The next term is the surface contribution of the ends.
The third term is another finite size contribution, which vanishes
in the limit N→∞. The quantity ξ is a correlation lengths defined
via

ξ ≡− 1
ln |λ</λ>|

. (57)

ξ essentially is a measure for how far from the chain ends the
latter will have an effect. It also is a measure for the decay of
pair-correlations along the chain, e.g. 〈ϑt(i)ϑt( j)〉, where i and
j are two monomers separated by the distance |i− j|. However,
this is all good and well, but how do we calculate quantities like
C∞?

We start with p(ϑt ;k), the probability that the kth torsion angle
along the chain is in the trans-state. This quantity is

p(ϑt ;k) =
Q(ϑt ;k)

Q
=

∑ paths passing through ϑt at k
∑ all paths

. (58)

We do know Q, i.e. the (Boltzmann weighted) sum over all paths.
But how do we force a polymer conformation (or path) to be in
the trans-state at position k? The answer is that we calculate the
partition function as before, except that we insert the matrix

Iϑt =

 0 0 0
0 1 0
0 0 0


before the kth transfer matrix in the trace. The result is

(
0 0 0
0 1 0
0 0 0

)(
g− ← g− g− ← t g− ← g+
t← g− t← t t← g+

g+ ← g− g+ ← t g+ ← g+

)

=

(
0 0 0

t← g− t← t t← g+
0 0 0

)
,

i.e. we force the path through the trans state at this torsion an-
gle along the chain. Note that here we use the notation i← j
compared to Eqs. (49) and (50). The analogous matrices for the
other two probabilities, p(ϑg− ;k) and p(ϑg+ ;k) are

Iϑg−
=

 1 0 0
0 0 0
0 0 0

 and Iϑg+
=

 0 0 0
0 0 0
0 0 1

 .

Hence

p(ϑα ;k) =
Tr(Tk−1Iϑα

TN−kTo)

Tr(TN−1To)

=
Tr(Dk−1Ĩϑα

DN−kT̃o)

Tr(DN−1T̃o)

N→∞
= Ĩϑα ,11 . (59)

Here α stands for either t, g−, or g+ and Ĩϑα
= S−1Iϑα

S. We also
assume that the larges eigenvalue, λ>, is the element D11.

Let us now attempt to compute C∞ for PE with this method.
First we need to work out the transfer matrix elements according
to Eq. (49). This means that we need an expression for uP(ϑ ,ϑ ′),
since we already have uB(ϑ) (cf. Eq. (36)). uP(ϑ ,ϑ ′) is modelled
via

uP(ϑ ,ϑ ′) = 4εCC

[(
σCC

R4

)12
−
(

σCC

R4

)6
]

(60)

and

R2
4 = 4b2 +2b2

{
− cosφ

(
3−2cosφ + cos2

φ − sin2
φcosϑ

)
−sin2

φ
(
cosϑ + cosϑ

′− sinϑ sinϑ
′)

+sinφ sin(2φ)cos2 ϑ

2
cosϑ

′
}
.

Note that b = 1.53 Å for the C-C bond length, φ = 112o, εCC/kB =

3.725 K und σCC = 4 Å. This is a steric interaction in the form
of a Lennard-Jones potential of C-atoms which are separated by
four bonds along the chain. The direct separation (after some
trigonometry) between these atoms is R4. Note that we never
mention any of the hydrogen atoms. This is because this is a
so-called united atom-model and hydrogens are fused with their
carbon atom into one effective carbon atom.

Table 2 lists the minima of uB defining our RIS angles. The next
table, Tab. 3, shows R4/σCC, for the different combination of two
successive RIS angles. Values less than unity mean that uP adds an
extra repulsion. Otherwise uP tends to make this particular com-
bination of torsion angles more favourable. Note that the pairs
ϑg− ϑg+ and ϑg+ ϑg− give rise to a pronounced steric hinderance,
which in turn suppresses the likelihood of this pairing. Finally,
Eq. (61) is the transfer matrix based on these values of the RIS
angles. At T = 400 K it possess the eigenvalues 1.59, 0.32, −0.22.
Note that in this case ξ ≈ 1, i.e. the effect of the chain ends or the
extend of correlations along the chain are short-ranged.
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Table 2 Minima of uB defining our RIS angles

uB[K]

ϑg− 1.107 417.5
ϑt π 0

ϑg+ 5.176 417.5

Table 3 R4/σCC for the different combination of two successive RIS angles

ϑg− ϑt ϑg+
ϑg− 0.94 1.12 0.70
ϑt 1.12 1.27 1.12

ϑg+ 0.70 1.12 0.94

T =

 e−427/T e−205/T e−1468/T

e−205/T e2.72/T e−205/T

e−1468/T e−205/T e−427/T

 (61)

Figure 18 shows a comparison of p(ϑg−) vs. T with uP = 0
(solid line) and with uP 6= 0 (dashed line). Here p(ϑg−) is com-
puted according to Eq. (59) for N = ∞. Note that we do not
need to also show p(ϑg+) and p(ϑt) because p(ϑg−) = p(ϑg+)

and p(ϑt)+ p(ϑg−)+ p(ϑg+) = 1. We can see that including the
uP-interaction between neighboring monomers makes ’kinks’ less
likely and therefore we expect that it increases C∞. We ob-
tain C∞ using 〈 f (ϑ)〉 = ∑α f (ϑα )p(ϑα ), where f (ϑ) stands for
sin(ϑ) or cos(ϑ). Thus in this particular case 〈cosϑ〉= 2(cosϑg−+

1)p(ϑg−)−1 and 〈sinϑ〉) = 0. Therefore we may use Eq. (34) and
obtain

C∞ =
1− cosφ

1+ cosφ

(
1

(cosϑg− +1)p(ϑg−)
−1
)

, (62)

which is plotted in Fig. 19 (selected values: T = 100 K, C∞ = 101;
T = 400 K, C∞ = 7.2; T = 450 K, C∞ = 6.6). Apparently this result
is very close to what is shown in the bottom panel of Fig. 12.
However, a couple of points are worth commenting on. (i) The
solid line Fig. 12 is computed by averaging cosϑ over the full
interval 0 ≤ ϑ ≤ 2π, whereas the solid line in 19 is computed by
averaging cosϑ over only the three RIS angles. In principle, we
may view this as confirmation of the quality of this approxima-
tion. (ii) the calculation of the RIS-transfer matrix result in Fig.
12 deviates in some (minor) aspects from our above calculation
(for details see R. Hentschke, Statistische Mechanik). Finally we
may ask whether our calculation of C∞ can be verified by exper-
iments? This is indeed possible, using for instance small angle
X-ray or neutron scattering. We shall come to this.

Before leaving this topic, we briefly want to comment on corre-
lations between the RIS torsion angles. Fig. 20 shows the proba-
bilities of pairs of trosion angles h(αβ )

s ∝ 〈ϑα (0)ϑα (s)〉 as function
of the separation s. Here α and β stand for g−, t, and g+. These
calculation were done in the bulk part of the chain, i.e. the chain
ends do not affect the results. Technically the calculation is very
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Fig. 18 Comparison of p(ϑg− ) vs. T with uP = 0 (solid line) and with
uP 6= 0 (dashed line).
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Fig. 19 Comparison of C∞ vs. T with uP = 0 (solid line) and with uP 6= 0
(dashed line).

similar to our above calculation of p(ϑα ). We only need to in-
sert two matrices Iϑα

and Iϑβ
in the proper positions within the

product of transfer matrixes - instead just one. The resulting cor-
relations possess a short range. Already after two monomers the
result is h(αβ )

s = p(ϑα )p(ϑβ ). Note that h(g+g−)
s = 0 for s = 0, be-

cause one and the same torsion angle cannot be in two different
RIS states. The details of this calculation can be found in ’Moleku-
lares Modellieren mit Kraftfeldern’ (Chapter IX).

The RIS/transfer matrix method has been applied to almost
every polymer. Much of this work was done by Paul Flory
and/or his coworkers. Most of the sometimes complicated details
are described in his classic book Statistical Mechanics of Chain
Molecules, Interscience: New York (1969). The first hint I have
found that the transfer matrix method is useful for polymers is
footnote 5 (referencing work by Mr. E. Montroll) in a classic
paper in the context of the solution of the two-dimensional Ising
model with this method (H. A. Kramers, G. H. Wannier Phys.
Rev. 60, 263 (1941)).

Self-Consistent Field Method:

This method applies to polymers whose partition function fac-
torises as in the case of the transfer matrix method. For the sake
of simplicity we consider a one-dimensional polymer chain de-
picted in Fig. 21. Each Kuhn segment has length b (I sometimes
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Fig. 20 Probability of pairs tt, tg−, g−g+ and g+g+ as function of the
distance s at T = 400 K. The left axis is for the solid lines, while the right
axis is for the dashed lines.

x

b

Fig. 21 A one-dimensional polymer path along the x-axis.

prefer b for the Kuhn length even though b is also used for the
monomer length. However, the meaning of b should always be
clear from the context.) and can be oriented in either x or −x di-
rection. Therefore there are 2n possible conformations for a poly-
mer consisting of n Kuhn segments. Let Qn(x1,xn) be the partition
function of such polymer starting at x1 and ending at xn. The fac-
tor 2n is introduced as a normalization. The Kuhn segments ’feel’
the external potential u(xi)(i = 1, ...,n). Hence

Qn+1(x1,xn+1) =
1
2∑

xn

′Qn(x1,xn)e−βu(xn+1) . (63)

∑
′
xn

is the sum over all xn from where we can reach the (n+ 1)th

segment at position xn+1 .

At this point we assume the following: (i) βu(xi)� 1 ∀ i; (ii)
u(x) varies little on the scale of one Kuhn segment. These assump-
tions allow us to expand the right hand side of Eq. (63) at xn+1,
i.e.

Qn+1(x1,xn+1) =
1
2∑

xn

′
{

Qn(x1,xn+1)

+(xn− xn+1)
∂Qn(x1,x)

∂x

∣∣∣∣
xn+1

+
1
2
(xn− xn+1)

2 ∂ 2Qn(x1,x)
∂x2

∣∣∣∣
xn+1

+ ...
}

×
{

1−βu(xn+1)+ ...
}
. (64)

Using ∑
′
xn
(xn−xn+1) = 0 and keeping the leading terms only yields

Qn+1(x1,xn+1)−Qn(x1,xn+1)∼=
1
2

b2 ∂ 2Qn(x1,x)
∂x2

∣∣∣∣
xn+1

−βu(xn+1)Qn(x1,xn+1) . (65)

Large n allow us to simply continue in the continuum limit, i.e.

∂

∂n
Qn(x′,x) =

b2

2
∂ 2

∂x2 Qn(x′,x)−βu(x)Qn(x′,x) . (66)

We solve this partial differential equation employing the ansatz

Qn(x′,x)∼= e−nµ0 ψ0(x′)ψ0(x) . (67)

This can be justified in various ways. First note that (66) looks
a lot like Schrödinger’s equation in quantum mechanics if n is re-
placed by a complex time. From this angle (67) looks much like
the step that takes us from the time-dependent Schrödinger equa-
tion to the stationary Schrödinger equation. Eq. (67) can also
be understood as the leading term in an expansion in eigenfunc-
tions. Using only the first term is equivalent to the assumption of
ground state dominance for large n. Another angle is this: (i) the
free energy and therefore −kBT lnQn must be extensive in n; (ii)
segments at x′ and x are to good approximation independent and
their contributions should therefore factorise. Hence we see that

∆Fcon f

nkBT
∼=−

1
n

ln
[
e−nµ0

]
= µ0 (68)

for large n, where ∆Fcon f = Fcon f −F(ideal)
con f with F(ideal)

kon f /(nkBT ) =
− ln2.

In any case, inserting (67) into (66) yields

b2

2
d2

dx2 ψ0(x)+
(

µ0−βu(x)
)

ψ0(x) = 0 , (69)

from which we obtain ψ0(x). But what is the meaning of ψ0(x)?
This becomes clear if we write down the probability for finding a
polymer segment at x in terms of the partition function, i.e.

c(x) =
1
n

∑x′,x′′,n′ Qn′(x′,x)Qn−n′(x,x′′)

∑x′,x′′ Qn(x′,x′′)
. (70)

Here the numerator is the number of paths or polymer conforma-
tions starting from (all possible) x′, then reaching x in (all possi-
ble) n′ steps or segments and then continue in n−n′ steps to (all
possible) x′′. The denominator counts all possible paths of length
n connecting (all possible) x′ with (all possible) x′′. Note that c(x)
also is a measure for the polymer concentration at x. Inserting Eq.
(67) into (70) yields

c(x)∼= ψ
2
0 (x) . (71)

In the following we want to demonstrate the use of Eqs. (68),
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(69) and (71) via two examples:

• A polymer near a sticky wall

We assume that a polymer sticks to a wall at position x = 0.
However, the interaction range is short (on the order of one seg-
ment length) and polymer segments outside this distance from
the wall are free. Here we are interested in the polymer concen-
tration outside the range of the direct interaction with the wall,
which means that we must solve

b2

2
d2

dx2 ψ0(x)+µ0ψ0(x) = 0

for ψ0(x). Since we consider a bound state, µ0 < 0 and the solu-
tion far from the wall is given by

ψ0(x) ∝ exp [−κx] ,

where

κ
2 =−2µ0

b2 .

The attendant change in free energy of the chain due to the ad-
sorption is

∆Fcon f

nkBT
=− (bκ)2

2
. (72)

• A polymer confined inside a one-dimensional slit

The polymer is confined between two hard walls inside a slit
whose width is D. This problem is analogous to a quantum par-
ticle in an infinite potential well. As before we assume ground
state dominance. For ψ0 we easily find

ψ0 ∝ sin(πx/D)

and for ∆Fcon f

∆Fcon f

nkBT
=

1
2

π2b2

D2 . (73)

We shall return to the results of the these two examples, when
we solve the same or similar problems using other methods .

Remark 1: What does this method have to do with ’self-
consistency’? Thus far we have treated the segment potential u(x)
as a purely external potential. However, we can assume that seg-
ments interact with each other, i.e.

u(x) ∝ c(x) = ψ
2
0 (x) . (74)

Eq. (69) then becomes a non-linear eigenvalue problem

−b2

2
d2

dx2 ψ0(x)+βυ(T )ψ3
0 (x) = µ0ψ0(x) . (75)

Here υ(T ) is a function of temperature.

Remark 2: It is easy to generalize this approach to three dimen-
sions. On a cubic lattice Eq. (66) becomes

∂

∂n
Qn(~r ′,~r) =

b2

6
~∇2
~r Qn(~r ′,~r)−βu(~r)Qn(~r ′,~r) . (76)

Counting Paths for Different RN - the Conformation Entropy:

When discussing the mean square end-to-end distance 〈R2〉 we
have not stated what the underlying probability distribution of ~R
looks like. In this section we want to obtain this distribution as
well as the conformation entropy of a polymer chain. We want to
base the discussion on the convenient and popular polymer model
depicted in Fig. 22, which is a chain of Kuhn segments of length
b on a cubic lattice. The question whether there is a significant
reduction of generality implied by the lattice we shall address at
the end of this section.

α

ω

Fig. 22 A polymer chain on a lattice.

Here we ask the question: What is the probability p(R) that the
two ends, labeled α and ω, do have the separation R? The an-
swer is p(R) =Ω(R)/∑R Ω(R). The quantity Ω(R) is the number of
different paths of length n originating from the same lattice point
and ending at a distance R from this lattice point. The denomina-
tor is the sum over all possible paths of length n originating from
the same lattice point without constraining the distance between
α and ω. Using Boltzmann’s famous entropy formula S = kB lnΩ

we have

S(R)−S = kB ln p(R) , (77)

where S(R) = kB lnΩ(R) and S = kB ln∑R Ω(R). The end-to-end
vector ~R is given by

~R =
n

∑
i=1

(xi,yi,zi) =

(
n

∑
i=1

xi,
n

∑
i=1

yi,
n

∑
i=1

zi

)
, (78)
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where xi, yi, and zi are random variables. Each of these may
assume the values {−b,0,0,0,0,b} with equal likelihood. Here
b is the lattice spacing and the six values correspond to the six
possible orientations of the links (in Fig. 22) along the main axes
of the cubic lattice.

We obtain p(R) via an important mathematical theorem - the
central limit theorem. This theorem states that if the si are ran-
dom variables with the average µs and the mean square fluctua-
tion σ2

s then the new random variable

Sn =
∑

n
i=1 si−nµs

σs
√

n
(79)

possesses the probability density

f (Sn) =
1√
2π

exp[−S2
n/2] (80)

in the limit of infinite n. However, this is a very good approxi-
mation even if n is not very large (The reader may confirm this
by generating S5 from random numbers si ∈ (0,1) (i.e. µs = 1/2
and σs = 1/

√
12). Construction of a distribution histogram based

on 104 S5-values generated in this fashion closely approximates
a Gaussian distribution with zero mean and standard deviation
equal to unity.). Based on the central limit theorem we immedi-
ately conclude

p(R)≈
(

3
2πnb2

)1/2
exp
[
−3

2
R2

x
nb2

]

×
(

3
2πnb2

)1/2
exp

[
−3

2
R2

y

nb2

]

×
(

3
2πnb2

)1/2
exp

[
−3

2
R2

z
nb2

]
,

i.e.

p(R) =
(

3
2πnb2

)3/2
exp
[
−3

2
R2

nb2

]
, (81)

where µx = µy = µz = 0, σ2
x = σ2

y = σ2
z = b2/3, and

4π
∫

∞

0 dRR2 p(R) = 1. Using this expression in Eq. (77) we obtain

S(R) = S(0)− 3kBR2

2nb2 . (82)

Note that the conformation entropy decreases when the separa-
tion of the ends of the chain is increased. This is because stretch-
ing a chain reduces the number of paths along which it can join
the two two endpoints.

Equation (81) is the limiting form of p(R) when the polymer
chain is purely a random walk and molecular details are not im-
portant. Note also that the above results are independent of the
constraint of the Kuhn segments to a cubic lattice. Finally, it is
worth pointing out that (81) as well as (82) are frequent building

blocks in the various construction schemes for the free energy of
polymer systems in the subsequent sections.

3.3 Flory’s Calculation of the Exponent ν

We had introduced the exponent ν in Eq. (26) - the general
expression for the mean square end-to-end distance in terms
of the chain length. For an ideal chain ν = 1/2. But what is
the value of ν when the chain is not ideal - and what does ’not
ideal’ mean? ’Ideal’ meant that chain conformations, on a certain
length scale, are random walks. An ideal chain does not interact
with itself (beyond short-ranged interactions of the monomers in
close proximity) - or other chains for that matter. An intuitive and
rather simple calculation, which allows us to study the influence
of ’interaction’ on ν and thus on the mean square end-to-end
distance is this:

Consider a polymer chain occupying a certain volume Rd ,
where d is the dimension of space. Here R is the same quan-
tity as in Eq. (82). The free energy of the chain in units of kBT
may be expressed as the sum of two contributions, i.e.

f (R) = f el (R)+ f i (R) . (83)

The contribution f el (R) is due to our chain entropy in Eq. (82),
i.e.

f el (R) =
3R2

2C∞b2N
+ const . (84)

Here we substitute C∞b2N for b2n.
The interaction term is modelled in analogy to the free en-

ergy (per kBT ) of a dilute real gas of small molecules, i.e. f ≈
fideal +NρB2(T ). Here fideal is the free energy of an ideal gas of
N molecules, whose number density is ρ. The quantity B2(T ) is
the second virial coefficient. Hence

f i (R) = Nρυ (T ) , (85)

where ρ = N/Rd and υ (T ), like B2(T ), is a function of T . In
other word, the N monomers of the chain are treated as entities
analogous to the N molecules in the dilute gas.

Combination of Eqs. (83), (84) and (85) yields

f (R) =
3R2

2C∞b2N
+υ (T )

N2

Rd + const . (86)

According to the second law of thermodynamics the free en-
ergy wants to be at its minimum. This means that the poly-
mer size R is adjusted to an equilibrium value Ro following from
d f (R)/dR|Ro = 0, i.e.

3Ro

C∞b2N
−dυ (T )

N2

Rd+1
o

= 0

or
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Rd+2
o ∝ N3 .

Since Ro ∝ Nν we conclude

ν =
3

d +2
. (87)

The ν-values for different d are compiled in Tab. 4. The value for
d = 1 is without doubt correct. The values for d = 2 and d = 3 we
cannot confirm at the moment. However, 0.6 for d = 3 is larger
than 0.5, the value of the ideal chain. This is reasonable, because
interaction should prevent the chain overlap and thus enlarge the
linear chain dimension. We shall return to this point shortly. For
d ≥ 4 we obtain the ideal value, ν = 0.5. For d = 4 this is easy to
see, at least from (87), but what about d > 4?

Table 4 Dimension dependence of ν.

d ν

1 1
2 3/4=0.75
3 3/5=0.6
≥ 4 1/2=0.5

We expect Ro ≥ Rideal and thus

f i ≤ υ (T )
N2

Rd
ideal

∝ υ (T )N2−d/2 N→∞−→ 0

for d > 4! Since f el does not vanish equally quick, we conclude
that the chain is ideal for d > 4.

Our above interaction term is based on the notion of a dilute
gas. But when does a polymer chain resemble a dilute gas?
The situation in which the monomers inside a polymer chain
can be compared to a dilute gas arises when the polymer is
in a solvent. This means that the above interaction term υ(T )
effectively includes the solvent but it is still modelled according
to the second virial coefficient of a gas. The simplest theory,
which nevertheless contains all important ingredients, is the van
der Waals theory in which B2(T ) = b− a/(kBT ). Here b and a
describe the (excluded) volume of the gas molecules and their
long-range attraction, respectively (van der Waals equation:
P = ρkBT/(1− ρb)− aρ2 where ρ = N/V ). It is customary to
distinguish different types of solvent in terms of the effective
quantities a and b:

• Athermal solvents: In an athermal solvent there is only
hard-body repulsion. Here this is the limit of the above B2(T )
when T becomes infinite (or a = 0) and the molecules are hard
bodies. Even though this is never quite realized in nature, the
concept use useful due to its simplicity.

• Good solvent: In a good solvent there is a small attraction
which reduces the repulsion and thus the polymer appears ’fluffy’.

• θ -solvent: Note that both b and a are positive and thus we
can adjust T so that B2(T ), or υ(T ) for that matter, is zero. This
temperature is the Boyle temperature in a gas. What does it mean
for our above calculation if υ(Tθ ) = 0? It means we must look at
the next term in the expansion in powers of the density when we
model f i. Hence

f i (R)∼ Rd
ρ

3
υ
′ (T ) ∝

N3

R2d . (88)

This leads to

ν =
2

d +1
. (89)

In d = 3 we now have ν = 1/2, i.e. the chains are ideal under
θ -conditions.

• Poor solvent: The second virial coefficient becomes negative
when T is below the Boyle temperature. Analogously we expect
that for T < Tθ the attractions overwelm the repulsion, which
would yield very compact conformations. Of course, we must
proceed with caution here, because we are looking at just one
term in an expansion. But nevertheless, it is plausible that at the
polymer chain will collapse at some point and essentially will fall
out of solution. In this case the monomers are densely packed
like molecules inside a liquid droplet.

An experiment in which the temperature is varied across the
θ -temperature is shown in Fig. 23. The figure depicts the tem-
perature dependence of the radius of gyration (S) and the hydro-
dynamic radius (RH), both quantities are measures for the size of
a polymer chain akin to the mean square end-to-end distance, for
polystyrene (Mw = 2.6 · 107) in cyclohexane. The phenomenon is
called coil-globule transition.

The relation between Ro and N for these solvents in three di-
mensions is summarized in Tab. 5

Table 5 Size of polymer chain in different solvents.

Ro ∼
athermal solvent N3/5

good solvent N3/5

θ -solvent N1/2

poor solvent N1/3

3.4 The Scaling Concept

Most of you are familiar with simple examples of dimensional
analysis. One such example is the time period Tp of a pendulum.
In step one of the dimensional analysis approach to this prob-
lem we compile a list of all physical quantities which might have
something to do with Tp. These quantities include m, the mass
of the weight at the end of the string, l, the length of the string
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Fig. 23 Temperature dependence of the radius of gyration (S) and the
hydrodynamic radius (RH) for polystyrene (Mw = 2.6 · 107) in cyclohex-
ane. This is Fig. 2 in S.-T. Sun, I. Nishio, G. Swislow, T. Tanaka The
coil–globule transition: Radius of gyration of polystyrene in cyclohexane J.
Chem. Phys. 73, 5971 (1980).

(which is assumed to have no mass), and g is the acceleration
of gravitation. In a second step we write down these quantities
including their physical dimension (cf. Table 6).

Table 6 Quantities potentially affecting the period of a mathematical
pendulum including their physical dimensions.

Tp s
m kg
l m
g m s−2

Next we construct dimensionless expressions based the quantities
in Table 6. Here there is only one

T 2
p g
l
∼ 1 . (90)

The notation ∼ 1 means that T 2
p g/l is (most likely) on the order

of one. Note that m does not appear, because the unit kg is not
cancelled by any of the other units. Hence we find

Tp ∼
√

l/g , (91)

which is correct except for a factor 2π on the rhs.

’Scaling’ is based on essentially the same idea, i.e. identification
of the ’basic’ quantities in a physical problem and using them to
construct dimensionless expressions. The difference is that basic
quantities are not merely quantities like b or N. Instead they are
slightly more complex. So what are they?

Let’s assume we are interested in a polymer’s free energy F ,
which is the equivalent to Tp in the above example. Here F of
course is a piece of the polymer’s total free energy only. This

piece depends on the specific problem. What we always exclude
are contributions to the total free energy from the many atomic
degrees of freedom (manly vibrational modes). Now let’s talk
about the basic quantities F may depend upon.

Figure 24 shows a polyethylene chain constructed via an algo-
rithm based on the transfer matrix approach. We shall explain the
algorithm in the next section. Here we merely remark that this
chain consists of 104 monomers. The key observation is that it ap-
pears divided into ’blobs’ - highlighted by the red circles. Another
chain of similar length, for which the same observation can be
made, is the one in the figure on the title page of this document
(A note of caution: Not everything that looks like a blob may in
fact be one. Some blobs disappear when we look at the chain
from a different direction.). So let’s assume these blobs all have
roughly the same diameter ξ and that within each blob there are
roughly Nξ monomers. The two quantities should be connected
via

Fig. 24 Polyethylene chain consisting of ’blobs’.

ξ ∼ bNν

ξ
. (92)

This means that ξ is likely one of the aforementioned basic quan-
tities.

Another basic quantity is the typical ’thermal blob energy’,
which we assume is kBT . In principle a rotation with respect to
a single bond, corresponding to energies on the order of kBT , is
sufficient to significantly alter the shape of a blob. Note again that
this does not include the ’many kBT s’ from the atomic degrees of
freedom, since those presumably do not affect the piece of F we
are interested in.

The equivalent to (90) therefore is

F
kBT

∼ N
Nξ

. (93)
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Here we assert that F is extensive in the number of blobs which
is N/Nξ . At this point it is useful to study (93) in three examples.

• Conformation free energy of polymers in dilute solution

Relation (93) by itself does not tell us much, because we do not
know Nξ or if we replace Nξ with ξ/b via (92) we do not know
ξ . In essence we need one extra equation or relation, allowing to
eliminate Nξ in (93). Here this relation is

R∼ ξ
N
Nξ

. (94)

The quantity R of course is the end-to-end distance in the polymer.
Note that (94) is reasonably well supported by Fig. 24.

Using (94) in conjunction with (92) and (93) yields the config-
uration free energy of the chain as

F ∼ kBT
(

R
bNν

)1/(1−ν)

. (95)

Setting ν = 1/2, i.e. the polymer chain is ideal, we find that the
result is in complete accord with Eq. (82). This is important
since it confirms that our intuition thus far is correct. It also
strengthens our confidence in a new result which we obtain with
ν = 3/5, i.e. the real chain-result!

Remark: If we pull on the ends of the chain, we can calculate
the magnitude of the restoring force f (el) via f (el) = dF/dR, which
yields

f (el) ∼ kBT
(

R
b1/ν N

)ν/(1−ν)

. (96)

This force will be linear (Hook’s law) for an ideal chain. But
in the case of a real chain it will increase with a larger power,
i.e. (R/N)3/2 for Flory’s ν-value in three dimensions. Eventually,
however, (96) must break down when R approaches the contour
length. The finite extensibility of the chain, which here is not
included, leads to a rapid divergence of the force.

•Weakly adsorbed chain

In this example we estimate the free energy of a weakly ad-
sorbed chain. As before we utilize the blob-picture as shown in
Fig. 25. The size of the absorbed blobs is once again given by
(92) and the free energy of adsorption Fad of the weakly adsorbed
chain is once again given by (93). The only modification is that
kBT is replaced by −kBT , since this is the (negative) blob adsorp-
tion energy. And as in the previous example we need one extra
relation to eliminate Nξ , which here involves δ , the fraction of
adsorption energy (in units of kBT ) of a single polymer segment
inside a layer of thickness b above the surface (i.e. we assume
that the range of the interaction with the surface has this short
range).

We obtain the number of monomers in contact with the surface,
i.e. the monomers inside a layer of thickness b, via multiplication
of the number density of monomers inside the blob, Nξ /ξ 3, with
the volume of the layer ξ 2b:

Nξ

ξ 3 ξ
2b∼

(
b
ξ

)1−1/ν

. (97)

Every monomer in this layer has a small fraction δ of the blobs
total adsorption energy. Hence

(
b
ξ

)1−1/ν

δ ∼ 1 , (98)

which yields the desired additional equation

ξ ∼ bδ
ν/(ν−1) . (99)

We conclude that the free energy of adsorption of the chain is

F ∼−kBT
N
Nξ

≈−kBT Nδ
1/(1−ν) (100)

=−kBT N

{
δ 2 (ν = 1/2)

δ 5/2 (ν = 3/5)
.

Fig. 25 Weakly adsorbed chain in the ’blob’-picture.

Note that the ideal chain result agrees with the result (72)
obtained using the self-consistent field approach.

• A polymer confined inside a tube

In this example we study a polymer confined inside a tube of
diameter D. The situation is depicted in Fig. 26. This is very sim-
ilar to the polymer in a one-dimensional slit discussed previously
using the self-consistent field approach.

We are interested in the D-dependence of the polymer’s config-
urational free energy. As in the previous two examples we rely on
the blob-picture and on equations (92) and (93). Here our extra
equation is

ξ ≈ D , (101)
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i.e. the blob-size is constraint by the tube diameter. Hence

Fcon f (D)∼ kBT
N
Nξ

≈ kBT N


(

b
D

)2
(ν = 1/2)(

b
D

)5/3
(ν = 3/5)

. (102)

Note that Fcon f for ν = 1/2 agrees with our previous result (73)
obtained using the self-consistent field approach to within a fac-
tor. This difference is not surprising, since (i) the scaling approach
(usually) does not yield numerical factors and (ii) Eq. (73) was
obtained in 1D.

Fig. 26 Polymer confined to a tube.

Remark: There is one detail here which should not escape our
attention. By starting from (101) we assume that the condition
bNν � D is satisfied, or bN1/2� D in the case of the ideal chain.
In the opposite limit the chain is not constraint by the tube and
we cannot expect the above results for Fcon f (D) to hold. Since we

successfully compared F(ideal)
con f (D) with the self-consistent field

result (73), we should wonder where the condition bN1/2 � D
is hidden in this calculation! The answer is that it is hidden
in Eq. (67). The right hand side of (67) is the first term in a
sum over terms exp[−nµiψi(x′)ψi(x)], where i = 0,1, . . . indicates
the eigenvalues and eigenfunctions. Ground state dominance,
i.e. the first term is sufficient, here implies n(µ1 − µ0) � 1.
If we compare Eq. (66) with Schrödinger’s equation for the
infinite potential well of width D (e.g. R. Hentschke Introductory
Quantum Theory, section 1.3) we find that the eigenvalues µi

are given by µi ∼ (b/D)2(i+ 1)2. Hence, n(µ1− µ0)� 1 implies
nb2/D2� 1!

In summary, the scaling approach involves a certain amount of
sound physical observation and intuition. Here the observation
is that longer chains appear to form chains of blobs. Therefore
the blob’s linear dimension ξ becomes the basic length. How the
chain of blobs behaves under given circumstances is where the
intuition comes in. Using kBT as the basic energy unit is another
important ingredient. Yet another is that the free energy is exten-
sive. Scaling allows to obtain significant results quickly. However,
there is the risk that an observation was not sound or the intu-
ition was not good, which produces incorrect results. Therefore it
is always good if a comparison with the results obtained by other
methods, like the ideal chain results in the above examples, is
possible. This then inspires confidence in the new results for real
chains.

3.5 Measuring Size and More by Scattering
We have invested considerable effort into the computation of C∞

(for PE). Therefore we should try and verify our results. This

can be done via small angle scattering experiments - for instance
using X-rays or neutrons. Visible light also is an option. Note

that the ’object’s’ size here can be quite large, i.e.
√
〈R2

N〉 =√
C∞b2N2ν ∼ 10 nm (assuming C∞ ∼ 10, b ∼ 5 Å, N ∼ 105, and

ν = 3/5)).
Before we begin our discussion of scattering, we take a moment

to introduce another measure of size. Even though we had intro-
duced the mean-square end-to-end distance 〈RN〉 as being a good
measure for ’size’ or ’linear dimension’, this is not strictly true.
For instance, how would we apply this to a branched polymer,
which may have many ends? A more general measure for ’size’ or
’linear dimension’ can be defined via the mean-square radius of
gyration

〈R2
g〉=

1
N

N

∑
i=1
〈(~ri−~rcm)

2〉 ∗= 1
N2

N

∑
i> j
〈r2

i j〉 , (103)

where~rcm = N−1
∑

N
j=1~r j is the center of mass of the polymer. We

leave * as an exercise to the reader. If we use once again 〈r2
i j〉 =

b2|i− j|, we can easily obtain

〈R2
g〉=

1
6
〈R2

N〉 (104)

for ideal linear chains (note: ∑
N
i> j |i− j| = (N− 1)1+(N− 2)2+

· · ·= 1
6 (N

2−1)N ≈ 1
6 N3).

Now let us turn to scattering. The sketch 27 illustrates the
general setup of such experiments. Incoming radiation with mo-
mentum~kin is scattered (elastically) into~kout by the sample. The
momentum transfer or magnitude of the scattering vector ~q is

q =
4π

λ
sin(θ/2) . (105)

λ is the wavelength of the the radiation (note: kin = kout = 2π/λ).

k. 
in 

- - - - - - - -

sample 
- - - -

➔ 

q 

- - -

atomk 

➔ 

r.

Fig. 27 Left: The scattering vector q resulting from the wave vectors
of incoming and outgoing radiation/particles. Right: Definition of the
vectors ~ri and ~r j and ~τ in relation to the scattering center (an atom in
this case).

When we discussed light scattering in chapter 2 we arrived at
Eq. (14) and in particular at

Pi(θ) =
1

V 2

∫
V

d3rd3r′ei~q·(~r−~r′) 〈cw(~r)cw(~r ′)〉
〈cw〉2

. (106)
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While we arrived at Pi(θ) by considering the scattering of visi-
ble light, this expression also can be used to obtain the angular
distribution of scattered intensity for other types of radiation like
X-rays or neutrons. There are still other probes like low-energy
electron diffraction (LEED), which is used to study solid surfaces
under vacuum conditions. In this case (106) is not sufficient,
because we must include multiple scattering, i.e. we must go
beyond the 1st Born approximation. But fortunately this is not
relevant for the study of polymers with electromagnetic radiation
or neutrons.

Let’s assume we want to calculate the scattering amplitude col-
lected over a volume element ∆V . In the example on the right
hand side in Fig. 27 the volume element i at the position ~ri

is occupied by an atom but the same concept can be applied
to a molecule or a monomer or even a group of neighboring
monomers within a polymer. In any case the scattering ampli-
tude is given by

∫
∆V

d3r ei~q·~rc(~r) =
∫

∆V
d3

τ ei~q·(~ri+~τ)c(~τ) = ei~q·~ri m f (~q) , (107)

where

fi(~q) =
1
m

∫
∆V

d3
τ ei~τ·~qc(~τ) (108)

is a so called form factor. The mass m is given by m=
∫

∆V d3τ c(~τ).
The form factor sums over the scattering amplitudes from within
∆V . In general c(~τ) is not merely a mass density as in our case
-we developed (106) based on our discussion of light scattering
- but it will be a function of the interaction between the probing
radiation/particle beam and the atom, monomer etc. with which
the radiation/particle beam interacts. Nevertheless, this interac-
tion in general is proportional to the density of atoms, monomers
etc. within ∆V , and thus our formalism applies to for instance
neutron scattering. Using the form factor we can rewrite Pi(θ) as

Pi(θ) =
1
〈N〉2

〈
N

∑
i, j=1

f (~q) f (−~q)ei~q·~ri j 〉 , (109)

where~ri j =~ri−~r j. N is the number of filled volume elements (let’s
say monomers) in the system. It is a convenient approximation
to set the form factor equal to one, i.e. f (~q)→ f (0) = 1. This is
reasonable because we shall be interested in the scattering from
at least an entire polymer coil, which has a much larger linear
dimension than the entities producing the form factor. Due to the
reciprocal relation between linear dimension in real space vs. q-
space f (~q) varies little in the q-range we are interested in. Thus
our final formula for Pi(θ) becomes

Pi(θ) =
1
〈N〉2

〈
N

∑
i, j=1

ei~q·~ri j 〉 . (110)

However, there are situations when instead of summing over the
positions of monomers we prefer an integration in the continuum.

For this purpose we can represent the monomer number density
via

ρ(~r) =
N

∑
i=1

δ (~r−~ri) . (111)

Note that
∫
V d3r... yields the same results, i.e. N, on the two sides

of this equation. Hence we obtain the following continuum form
of Eq. (110):

Pi(θ) =
1
〈N〉2

∫
V

d3rd3r′ei~q·(~r−~r′)〈ρ(~r)ρ(~r′)〉 . (112)

In what follows we shall first employ the discrete summation, i.e.
(110), to obtain the angular dependence of the scattering inten-
sity collected from polymer coils, before returning to the contin-
uum formula.

Let’s suppose that we momentarily study a closed system in
which the number of monomers is constant, i.e. N = 〈N〉. The
meaning of 〈∑N

i, j=1 . . .〉 in this case is twofold. Suppose someone
rotates our sample. Will this change Pi(θ)? No - because we
look at many polymers at the same time and our overall system
is isotropic. Thus, one piece of 〈∑N

i, j=1 . . .〉 is an orientation av-
erage, keeping the relative positions (and therefore ri j = |~ri j|) of
the scattering centers fixed, i.e.

〈ei~q·~ri j 〉orient =
1

4π

∫ 2π

0
dϕ

∫
π

0
dϑ sinϑeiqri j cosϑ =

sin(qri j)

qri j
. (113)

Here we have used the direction of ~q as our z-direction.

Now suppose we scatter from a single chain for a long time or
our scattering intensity is independently contributed from many
identical chains. Is ri j, where i and j denote monomers either in
the single chain or the ith and jth monomers in each of the many
chains, a constant? No, it changes due to conformation changes
and our scattering intensity is an average over all possible values
of ri j for all pairs i j. Hence

〈ei~q·~ri j 〉= 〈
sin(qri j)

qri j
〉con f =

∫
d3ri j p(ri j)

sin(qri j)

qri j
, (114)

where p(ri j) is the normalized probability density that the
distance between i and j is ri j. So, how do we find p(ri j)?

Scattering from Ideal Chains:

The answer depends on the level of approximation we chose.
Eq. (81) gives p(ri j) when i and j are the monomers at the chain’s
ends. But if i and j are inside the chain we can still use Eq. (81).
Instead of the end-to-end distance R we now substitute the i-to- j
distance ri j and n becomes |i− j|, i.e.

p(ri j) =

(
3

2π|i− j|b2

)3/2
exp

[
−3

2

r2
i j

|i− j|b2

]
. (115)
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Inserting (115) into (114) yields

〈ei~q·~ri j 〉= exp[−|i− j|b2q2/6] . (116)

Hence

Pi(θ) =
1

N2

N

∑
i, j=1

e−|i− j|b2q2/6

∗
=

1
N2

(
N(e2a−1)+2ea(e−aN −1)

)
(ea−1)2 , (117)

where a = b2q2/6 (*: here I use Mathematica to do the summa-
tion). Note that the summation is analogous to the one in Eq.
(44). If a� 1 we can use ea ≈ 1+a and keeping the leading order
only we obtain

Pi(θ)≈
2(e−x + x−1)

x2 →

{
2
x (x� 1)

1− 1
3 x (x� 1)

. (118)

Here x = aN = q2〈R2
g〉. This formula was first derived by P. Debye

in 1947. Note that x� 1 is sensible, despite our previous assump-
tion a� 1, when N is sufficiently large. The limit for x� 1 is
known as Guinier’s law. Debye’s formula and its two limits are
depicted in Fig. 28. Note that at x ∼ 1 the intensity shows the
strongest change as we had stated above. We may say that De-
bye’s formula, or Guinier’s law for that matter, is the form factor of
a polymer based on (81). In the limit x� 1 or q2〈R2

g〉� 1 we look
at the whole polymer, whereas in the limit x� 1 or q2〈R2

g〉� 1 we
look at the Gaussian structure inside.

0.01 0.10 1 10 100 1000
x

0.2

0.4

0.6

0.8

1.0

1.2
Pi (θ)

Fig. 28 Pi(θ)) vs. x according to Eq. (118). The dashed lines show the
two limiting forms.

But let us now return to our original motivation, the experi-
mental confirmation of our calculation for CN . We introduce the
characteristic ratio CN ≈ C∞ into (118) realising that b2N is just
〈R2

N〉 and using its generalization (26) (with ν = 1/2) we now
consider b a bond length and x becomes x = q2C∞N/6, where, in
addition, we also use b as the unit of length, i.e. q is now in units
of 1/b. Consequently, a plot of q2NPi(θ) should yield a plateau
of the data, i.e. q2NPi(θ)→ 12/C∞ for large q (note: ’large q’, as
we shall see shortly, really means ’intermediate q’ for real chains).

Such experimental results are shown in Fig. 29. Here the reduced
intensity is multiplied by q2 in order to bring out the ’Gaussian
plateau’, which is called Kratky plot. Note that Eq. (118) is a
good approximation to the experimental data and C∞ ≈ 7 is in
good accord with our result obtain from the RIS/TM method for
this temperature.Molekulares Modellieren mit Kraftfeldern 447
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Abbildung X.3  Reduzierte Intensität q2I / (IoN)  aufgetragen gegen den Betrag des
Streuvektors q . Die mit der durchgezogenen Linie verbundenen offenen Kreise ergeben
sich aus der Berechnung von Gleichung (X.15) mit der Abstandsverteilung aus Abbil-
dung X.2. Die gestrichelte Linie repräsentiert das Gauß-Knäuel, dessen Streuintensität
durch die Debye-Funktion beschrieben wird. Die gepunkteten Linien entsprechen 1000
Streuzentren entlang einer Geraden im Abstand 1 (a) bzw. cos34o  (b). Die geschlosse-
nen Kreise sind die entsprechenden experimentellen Resultate [4].

Die Motivation hinter der Kratky-Auftragung ist die möglichst einfache Darstellung der

folgenden beiden Grenzfälle [5]. Der erste ist das Gauß-Knäuel, d.h., eine lange Polymerkette

verhält sich wie ein Zufallsweg im Raum (engl.: random walk), bei dem die Abstände

zwischen den Streuzentren einer Gaußverteilung genügen. Dieses Verhalten erwartet man für

große Abstände und daher bei kleinen Streuvektoren. Der zweite Grenzfall ist die steife li-

neare Kette aus Streuzentren. Ein Polymer, betrachtet bei kurzen Abständen, hat in der Regel

auch eine gewisse Steifigkeit, und sollte sich in etwa durch diesen Grenzfall beschreiben las-

sen.

Im Fall der Gauß-Kette erhält man das Resultat (siehe z.B. [5])

I
IoN2 =

2 exp[−x]+ x −1( )
x2

(X.16)

wobei x ≅ 1
6CN q2N  gilt, so daß im Limes q →∞   folgt q2I / (IoN)→ 12 / CN . D.h., es

sollte möglich sein, aus dem Plateau in der Kratky-Auftragung CN  zu bestimmen. In der Tat

haben wir bei der Auftragung von (X.16) in Abbildung X.3 den Wert C1000 ≈ C∞ = 6.953

benutzt, den uns die RIS/Transfermatrix-Methode des Kapitels X liefert. Die gute Überein-

Fig. 29 Kratky plot of the reduced scattering intensity obtained from
polyethylene in the melt by small-angle neutron scattering (G. Lieser,
E. W. Fischer, K. Ibel J. Polym. Sci., Polym. Lett. 13, 39 (1975)).
Here I/(IoN) = NPi(θ) and q = qexpb with b = 1.53 Å. The data are the
solid dots. The long-dashed line shows Eq. (118) using C∞ ≈ 7. The
open symbols were obtained using the RIS/TM method to build chains
as explained in the text. The two straight dotted lines labeled a and b
correspond to straight rows of C-atoms spaced 1 unit (a) or cos34° units
(b) apart.

Fig. 29 contains also open circles, which appear to be close
to the actual data - closer than (118). Where do the open sym-
bols come from? The answer brings us back to Eq. (114) and
to the average over chain conformations. Suppose we generate
many independent conformations of ’united atom’ PE chains by
some method - we explain the method below. We then compile
a histogram of distances ri j between pairs of united-atom carbon
atoms (scattering centers) within each chains and average all the
histograms. The result is n(r,∆r) shown in Fig. 30. Here ∆r is
the bin width and r is the distance between pairs corresponding
to this bin. Note the numerous ’spikes’ at small r. There must
be, for instance, a pronounced spike at r = 1, because there are
N−1 pairs separated by exactly one bond distance. At small C-C
separations the PE chain is not really a random walk and these
separations are not yet ’fuzzy’ as they are when the separations
between C-atoms become large.
Using n(r,∆r) the scattering intensity becomes

Pi(θ)≈
1

N2 ∑
k

n(∆r k,δ r)
sin(q∆r k)

q∆r k
. (119)

Here the k-summation is over all bins and r = ∆r k. We also omit
a term ∝ N.

In order to better understand what is happening for q > 0.35,
we must look at the next figure, Fig. 31, which shows Kratky
plots for PE chains of very different length. All curves apparently
converge when q becomes large. This is because at large q we
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I
Io
= N 1+ sin q∆r i[ ]

q∆r i
n ∆r i,∆r( )

i=1

imax
∑











(X.15)

n ∆r i,∆r( ) (mit r = ∆r i ) ist die mittlere Anzahl von Paaren aus effektiven Kohlenstoffato-

men deren Abstände im Intervall (∆r i − ∆r / 2,∆r i + ∆r / 2) liegen, und ∆r imax  ist der

größte so auftretende Abstand. Die Mittelwertbildung bezieht sich hier auf unsere 100 nach

der RIS/Transfermatrix-Methode erzeugten Kettenkonformationen. Abbildung X.2 zeigt die

so erhaltene mittlere Abstandsverteilung n ∆r i,∆r( ). Für kleine Abstände r  ist die Verteilung

(fast 9) diskret. Die erste ausgeprägte Spitze erscheint bei r = 1 und enspricht der Bindungs-

länge. Mit zunehmendem r  wird die Verteilung mehr und mehr kontinuierlich.

0

0.5

1

0 20 40 60 80 100 120

n(r,∆r)

r

Abbildung X.2  Die Abstandsverteilung n r,∆r( )  -hier bei 1 abgeschnitten- gemittelt über
100 Konformationen als Funktion von r  bei T = 140oC  mit ∆r = 0.01 und N = 1000.
Der Einschub zeigt eine der erzeugten Kettenkonformationen.

Im nächsten Schritt berechnen wir die Streuintensität gemäß Gleichung (X.15) mit n ∆r i,∆r( )
aus Abbildung X.2. Das Resultat zeigt die Abbildung X.3. Die Form der Auftragung, d.h.,

q2I  gegen q , heißt Kratky-Auftragung.

9 Man beachte, daß Überschneidungen möglich sind!

Fig. 30 Distance distribution n(r,∆r) (shown here truncated at 1) com-
piled from hundred PE chain conformations at T = 413 K using ∆r = 0.01
(in units of the C-C bond length) and N = 1000. The inset depicts a
selected conformation.

are probing short distances in real space and on short distances a
short chain differs little from a long chain. When q is decreased,
however, we begin to probe larger and larger distances in real
space and a N = 20-chain then differs greatly from a N = 1000-
chain. For PE to be well represented by a Gaussian random walk,
i.e. by (115), we need chains containing at least several hundred
effective C-atoms. By the way, the two straight dotted lines la-
beled a and b in Fig. 29 represent Kratky plots of straight rows of
C-atoms spaced 1 (a) unit or cos34° (b) units apart.
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quantitativ, zu welchem Anteil die Intensität bei großen q -Werten tatsächlich von den kurzen

Längen beigetragen wird 11.

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6

q 2I
IoN

q

T=413K

b
a

c
d

Abbildung X.4  Reduzierte Intensität q2I / (IoN)  gegen den Betrag des Streuvektors q  für
verschiedene Kettenlängen N = 20(a),50(b),200(c),1000(d).

Anwendungsbeispiel X.2: Artefakte bei der Berechnung von Streuintensitäten an

Bulksystemen

Im Gegensatz zum Beispiel des Polyethylens, wo wir die Streuintensität basierend auf

dem gesamten Polymermolekül berechnet haben, wollen wir hier die Streuung an einer fikti-

ven atomaren Flüssigkeit betrachten, von der uns nur einen kleines (Simulations-) Volumen

zur Verfügung steht. Genauer gesagt wollen wir Artefakte diskutieren, die diese Berechnun-

gen verfälschen können.

Wir gehen von der Gleichung (X.8a) aus, und betrachten ein System aus nur einer Sorte

von Atomen mit f q( ) = 1, d.h.,

′
= + π ∫ −( )I

I N
dr r qr

qr
g r

o

R
1 4 1

0

2
2ρ

sin[ ] ( )
(X.17)

11 Die Korrespondenz zwischen kleinen Abständen und großen q -Werten liefert auch die Begründung für die
angenommene Konstanz von f (q) . Da die inneratomaren Abstände klein sind, ändert sich f (q)  in den klei-
nen q -Bereichen, die wir hier betrachten, nur wenig (vgl. dazu die Beispiele für f (q) , die man in verschie-
denen Festkörperlehrbüchern wie findet).

Fig. 31 Kratky plot of the reduced scattering intensities (note: I/(IoN) =

NPi(θ)) for numerically generated chains of different length: N = 20 (a),
N = 50 (b), N = 200 (c), and N = 1000 (d).

What is the construction method for the chain conformations
used to generate the open symbols-results in Figs. 29 and 31?
Since we want to generate PE chains we use φ = 112π/180.
The torsion angles are ϑg− ,ϑt and ϑg+ , which we had used
when we discussed the transfer matrix-method. We also use the
potential energy functions (36) and (60). The bond length is
the unit of length. Finally, P(l | k) ≡ P(lk)/P(k) is the condi-
tional probability that torsion angle l follows after torsion angle k.

For any number of torsion angles the algorithm is the following:

1. Generate a uniform random number z in the interval [0,1].

2. Continue an existing chain, whose last torsion angle is ϑ (k),
with the new torsion angle

ϑ (1) if z≤ P(1 | k)
ϑ (2) ” P(1 | k)< z≤ P(1 | k)+P(2 | k)
ϑ (3) ” P(1 | k)+P(2 | k)< z≤ P(1 | k)+P(2 | k)+P(3 | k)

...
...

...
ϑ (m) if P(1 | k)+ ...+P(m−1 | k)< z .

The new bond vector ~bi+1 is then generated via ~ei+1 =

−~ei cosφ +~ei×~ei−1 sinϑ (l)− (~ei×~ei−1)×~ei cosϑ (l), based on
its predecessors. The~e are unit vectors along the bonds indi-
cated by the subscripts. [Start the chain from two arbitrary
but not parallel vectors, e.g. ~e−1 = (1,0,0) und~e0 = (0,1,0)].

3. Continue with step 1 while i+1 is less than the desired chain
length.

In the present case we can use the probabilities according to Eq.
(59) instead of the full conditional probabilities.

Perhaps you are puzzled by the following question regarding
the actual experiment. If the sample is a dense melt, how can
we be sure that the two scattering centers i and j do belong to
the same chain? The answer is that the experimentalists use a
mixture of protonated and deuterated polymers. A small amount
of chains in which deuterium replaces the ordinary hydrogen is
mixed into a much larger amount of ordinary chains. The diluted
and thus isolated deuterated polymers provide a much stronger
contrast and ’outshine’ the protonated polymers. This does not
work with X-rays (or visible light) since the latter interact with
the electron shells.

Static Light Scattering Revisited:

This is a good point to return to our discussion of light scatter-
ing in chapter 2 and in particular to Eq. (18). Eq. (18) can be
combined with Eq. (118) plus a third piece into a new equation
which is used to obtain the weight average molar polymer mass,
the radius of gyration and the second osmotic virial coefficient
in a widely used standard procedure called the Zimm plot (B.H.
Zimm Apparatus and methods for measurement and interpretation
of the angular variation of light scattering; preliminary results on
polystyrene solutions, J. Chem. Phys. 16, 1099 (1948)). We first
write down this equation, then provide a justification for it and
finally discuss its use. The equation is

K〈cw〉
Rθ

=
(
1+

1
3

q2〈R2
g〉
)( 1

M̄w
+2A2〈cw〉

)
. (120)

The first term in brackets on the right hand side results if we
approximate Pi(θ) by Guinier’s law from Eq. (118). The sign is
different because we use (1− z)−1 ≈ 1+ z for small z. The second
factor, i.e. (1/M̄w +2A2〈cw〉), requires additional work however.
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In order to find this factor we must look at Pi(θ) in its form in
Eq. (112), i.e.

Pi(θ) =
1
〈ν1〉2

1
V 2

∫
V

d3rd3r′ei~q·(~r−~r′)〈ν1(~r)ν1(~r′)〉 , (121)

where we use N = m1ν1. m1 is the number of monomers within
a polymer and ν1 is the number of polymers. You may object to
this because we just stated ’The first term in brackets on the right
hand side results if we approximate Pi(θ) by Guinier’s law from
Eq. (118)’, which would mean that we have taken care of Pi(θ)

already. This is not quite right though. What we have done thus
far means that we have included the scattering from single chains.
However, if we look at our system on a much larger scale we begin
to include more and more polymers. The situation is comparable
to what we did when we discussed the form factor of a monomer.
Guinier’s law here essentially is the form factor of a polymer. Now
we are interested in the contribution to the scattering intensity
on this much larger scale - in fact we are looking at an infinite
volume in which the polymer mass density nevertheless is 〈cw〉
on average. This means we want to compute Pi(θ) in the limit
~q→ 0. In this limit (121) becomes

Pi, f (0) =
1
〈ν1〉2

1
V 2

∫
V

d3rd3r′〈ν1(~r)ν1(~r ′)〉 . (122)

Note in particular that we are dealing with an open system in
which the number of polymers ν1 fluctuates. ν1 is given by

ν1 =
1
V

∫
V

d3r ν1(~r) . (123)

Hence

Pi, f (0) =
〈ν2

1 〉
〈ν1〉2

. (124)

In standard textbooks on Statistical Mechanics or Statistical
Thermodynamics (e.g. R. Hentschke Thermodynamics (2nd ed.),
section 5.3.2) the quantity 〈ν2

1 〉 is discussed in the context of the
grand canonical ensemble applied to a one-component system in
which the particle number can fluctuate. Here our system is a
solute in a solvent but the general computation remains the same
- except that the chemical potential becomes the chemical poten-
tial of the solute and the pressure becomes the osmotic pressure,
i.e.

〈ν2
1 〉=

∂ 〈ν1〉
∂ (β µ1)

∣∣∣
β ,V

=
1

−β
V 2

〈ν1〉2
∂Π1
∂V

∣∣
β ,〈νi〉

, (125)

where µ1 is the polymer chemical potential and β = (kBT )−1. In
section 4.4 we shall discuss the osmotic pressure of polymers in
solution. We shall see that

Π1 =
1
β

[
〈ν1〉
V

+B2

(
〈ν1〉
V

)2
+O

((
〈ν1〉
V

)3
)]

(126)

in the limit of small polymer concentration and therefore

〈ν2
1 〉= (1+2B2〈cw〉/M̄w)

−1〈ν1〉 . (127)

Hence

Pi, f (0) = (1+2B2〈cw〉/M̄w)
−1〈ν1〉−1 (128)

(note: A2 = B2/(M̄w)
2). The final step consist in the approxima-

tion

Pi(θ)≈ Pi,G(θ)Pi, f (0) , (129)

which means that we approximate the total Pi(θ) by the prod-
uct of the Guinier law, Pi,G(θ), with Pi, f (0) due to the number
fluctuations of the number of polymers in the volume. In other
words, we assume that the shape of the scattering intensity is well
described by Guinier’s law and the leading q-independent correc-
tion is contributed by the polymer-polymer interaction expressed
in terms of the second osmotic virial coefficient. Fig. 32 shows
light scattering intensity obtained form a linear polymer in so-
lution at variable concentrations including 0.033, 0.052, 0.097,
0.142, 0.194, 0.288, 0.391, and 0.530 g/dL from bottom to top.
Note that the mass average molecular weight of the polymer is
7.47 ·106 g/mol. The data are reasonably linear - and therefore in
line with our ’ad hoc approximation (129) - only for the lowest
polymer concentrations.

Let’s discuss how to use Eq. (120). We could for instance try
to make a plot of K〈cw〉

Rθ
vs. 〈cw〉 at q = 0. From the intercept

of a line through the data with the y-axis we would find 1/M̄w

and the slope would be 2A2. However, data at q = 0 are not
available, since this means looking directly into the incoming
beam. Likewise we cannot plot K〈cw〉

Rθ
vs. q2 at 〈cw〉 = 0 to

obtain 1/M̄w from the intercept and 〈R2
g〉/(3M̄w) from the slope.

Without polymer we cannot make this measurement. Instead,
measurements are carried out which yield K〈cw〉

Rθ
for a series of

non-zero concentrations and non-zero scattering angles as shown
in the Zimm plot of Fig. 33. The trick is that on the x-axis it is not
just q2 but q2 + co〈cw〉 which is plotted, where co is an arbitrary
constant. This shift of q2 will not change the slope or intercept of
the cw = 0-line, which we construct by drawing a line parallel to
the thin blue lines through the data for 〈cw,1〉, 〈cw,2〉 and 〈cw,3〉.
However, this line is subject to a constraint. The constraint is
that the line, the thick red line in Fig. 33, must, on the y-axis,
intersect with another line, the thick blue line, drawn parallel to
the red lines through the data for q1, q2 and q3. This is because
for 〈cw〉 = q = 0 we must have K〈cw〉

Rθ
= 1/M̄w (independent of

co!). Hence the Zimm plot yields the desired information, i.e.
M̄w, 〈R2

g〉 and B2. Remark 1: The procedure also works if fitting
the data requires slightly bent lines! Remark 2: An expression for
B2 in Eq. (120) is given in Eq. (179) in the context of osmotic
pressure in a dilute polymer in a solvent computed using a mean
field lattice model.
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Fig. 32 Light scattering intensity from from poly(α-methylstyrene) in
toluene at 25° C. (copied from Fig. 1 in I. Noda et al. Thermodynamic
Properties of Moderately Concentrated Solutions of Linear Polymers Macro-
molecules 16, 668 (1981)).

Scattering from Non-ideal Chains:

Thus far we have sidestepped the exponent ν . What is the
effect of ν 6= 1/2 on the scattering intensity? Or in other words,
how can we determine ν from scattering experiments?

Equation (95) tells us essentially what p(R) is, i.e. the p(r)
which for intersecting random walks or ideal chains is given by
(81). Note that (95) is a configuration free energy equal to
−T Scon f =−T kB ln p(R)+ const. This immediately tells us

p(R) ∝ exp[−kν (R/bNν )1/(1−ν)] , (130)

where kν is a factor which equals 3/2 if ν = 1/2. We can try and
use this p(R) to express p(ri j) in Eq. (114) and then proceed as
before with the calculation of the scattering intensity. However
this is quite tedious and another approach is better and provides
more physical insight.

Before we start, let us briefly look at the effect of ν on 〈R2
g〉. We

make a short calculation, i.e.

N

∑
i> j
|i− j|2ν = (N−1)12ν +(N−2)22ν + . . .

≈
∫ N

1
dx(N− x)x2ν ≈ N2ν

(2ν +1)(2ν +2)

○ ○ ○ ○
○ ○ ○ ○

○ ○ ○ ○
○ ○ ○ ○

○ ○ ○ ○

q2+co 〈cw〉

K 〈cw〉

Rθ

co 〈cw, 1 〉 co 〈cw, 2 〉 co 〈cw, 3 〉

q1
2q2
2q3
2q4
2

↕M-1

〈cw〉=0
〈cw, 1 〉 〈cw, 2 〉 〈cw, 3 〉

q=0

q1

q2

q3

q4

Fig. 33 Illustration of a Zimm plot.

for large N. Hence, in this limit, we have

〈R2
g〉 ∝ N2ν . (131)

In other words, it does not really matter here whether we look
at a linear polymer or maybe a polymer with a more complex
architecture.

What we have is the general relation

n∼ r1/ν . (132)

The quantity n is the number of monomers or Kuhn segments we
expect to find inside a circle with radius r. Ordinarily we ex-
pect the number of things to increase with the dth power in a
d-dimensional uniform system. In a poor solvent in three dimen-
sions, for instance, in which the polymer collapses into essentially
a dense drop, we have 1/ν = 3 (cf. Tab. 5). Here, however,
we usually look at systems possessing regions, which come in all
sizes, devoid of monomers or Kuhn segments. We can tell because
generally 1/ν < d. We are looking therefore at fractals and

d f ≡ 1/ν (133)

is their (mass) fractal dimension.
So, how do we calculate the scattering intensity of a fractal

structure based on (132)? We can use Eq. (119). Remember that
n(∆rk,∆r) is the number of scatterers in a shell of thickness ∆r and
radius r. Based on (132) this means that

n(r,dr)∼ rd f−1 , (134)

where we have made the transition to the infinitesimal form, ∆r→
dr and ∆r k→ r. Consequently the summation of k is replaced by
an integration over r, i.e. ∑k→

∫
dr. Hence

I(q)∼
∫

∞

0
dr rd f−1e−r/ξ sin(qr)

qr
. (135)

The exponential is a convenient cutoff, accounting for the finite-
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ness of the fractal. Using x = qr this becomes

I(q)∼ 1
qd f

∫
∞

0
dxxd f−1e−x/(qξ ) sinx

x
∼ q−d f if q� ξ

−1 . (136)

The integral is a slowly varying function of qξ if this quantity
is significantly larger than unity, i.e. this condition means that
we are looking inside the fractal objects. Clearly, there is another
limit if q becomes ’too large’. ’Too large’ here means that we begin
to see the details within the fractal which themselves possess a
different structure. But in the intermediate regime I ∼ q−d f or in
the case of polymers

I(q)∼ q−1/ν (137)

holds.
If we apply this formula to the ideal chain or ν = 1/2 we find

q2I(q) ∼ const, which is the plateau of the dashed line in Fig.
29. Real chains in three dimensions would yield q2I(q) ∼ q1/3

instead. Note that the experimental data in this figure indeed
exhibit a slow increase. But this increase is also obtained with
the transfer matrix model, which produces again ideal chains.
Thus, in this case, the slow increase in the ’plateau regime’ is
likely due to the steeper increase at still larger q, where the
observed objects do not posses the expected fractal structure. In
addition, other experiments have confirmed that chains in melts
are indeed ideal chains (e.g. D. Ballard et al. Eur. Polymer J. 9,
965 (1973), J. P. Cotton et al. Macromolecules 7, 863 (1974), R.
Kirste et al. Polymer 16, 120 (1975)). The general idea is to carry
out experiments in a sufficiently wide q-range, either on melts
or polymer solutions, and then plot ln I(q) vs. lnq. This should
yield a straight line with slope −1/ν in the proper q-range. Also
possible are plots where the inverse intensity is plotted vs. q5/3

as in Fig. 34. This is an example of a study where the authors
look at the cross-over between ν = 1/2 vs. ν = 3/5 in solutions at
variable polymer concentration.

Overlap Concentration:

A concentration of particular importance is the overlap con-
centration ρ∗ at which the individual volumes of isolated poly-
mers begin to overlap. Intuitively this should happen when the
overall monomer concentration is the same as the monomer con-
centration within the volume occupied by the isolated polymer,
i.e.

ρ
∗ =

N
Rd

g
∼ N

Ndν
= N1−dν . (138)

Here Rg ≡=
√
〈~R2

g〉. For d = 3 this means ρ∗ ∼ N−1/2 when the

chains are ideal and ρ∗ ∼ N−4/5 when they are not. Note that
ρ∗ is very small when the chains are long. Another important
quantity by which the solvent quality itself can be controlled is
temperature.

Fig. 34 Inverse scattering intensity vs. momentum transfer raised to the
power 5/3 from Fig. 2 in B. Farnoux, F. Boue, J. P. Cotton, M. Daoud,
G. Jannink, M. Nierlich, P. G. De Gennes Cross-over in polymer solutions.
Journal de Physique 39, 77 (1978). The polymer is polystyrene dissolved
in carbon disulfide. The data sets are results for a fixed concentration
of deuterated PS (0.005 g cm−3 within an overall variable amount of
protonated PS.

Question: What is ρ∗ in the system for which light scattering
data are shown in Fig. 32? Assume ’good solvent’. You should
find that ρ∗ is less or at best about equal to the lowest of the
concentrations in that figure.

However, we want to move on and not get overwhelmed by
what can be done and a multitude of power laws. Additional
information on the topic of scattering from polymers can be found
in a book edited by O. Glatter and O. Kratky (Small Angle X-ray
Scattering, Academic Press, 1982) - in particular in the article by
R.G. Kirste and R.C. Oberthur (Synthetic Polymers in Solution) or
in G. Strobl The Physics of Polymers, Springer.

4 Thermodynamics of Blends, Solutions, and
Networks

What follows, at first glance, may appear unrelated to our expo-
sition of single chain statistical thermodynamics. This is because
the focus is no longer on conformations of single chains or quan-
tities like the end-to-end distance or the radius of gyration but
rather on the ’combinatorial’ or ’packing’ entropy of many chains
in a certain volume as well as on their free enthalpy. In the follow-
ing we develop a simple mean field theory on the lattice, which
nevertheless can be applied to blends, solutions, and networks.
There are cases when our results will not be correct and will have
to be revised. However, the lattice approach is certainly worth-
while since it provides an overview without immediately blinding
us with complexity.
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Fig. 35 Binary mixture of linear polymers represented by paths on a
lattice.

4.1 A Lattice Model for Polymer Mixtures and Solutions
In the following we study binary mixtures assuming that the two
components are linear polymers. We know already that a simple
but instructive approximation of a linear polymer is a path on a
lattice as depicted in Fig. 35. Note that this figure is quite similar
to Fig. 22, except that here we do not focus on the end-to-end dis-
tance. The lattice is a square lattice and every lattice cell contains
one straight polymer segment or Kuhn segment. Kuhn segments
belonging to the same polymer are connected by a solid line. The
solid and hollow circles indicate two chemically different types
of Kuhn segments. In the following we consider νi polymers of
type i with length (or ’mass’) mi (i = 1,2) Kuhn segments. This
means that all polymers of type i posses the same length, i.e. they
are monodisperse. In reality (technical) polymers are polydis-
perse, i.e. they do have a distribution of lengths. Here we avoid
this complication. There are N = N1 +N2 Kuhn segments total
(Ni = miνi) and N is equal to the number of lattice cells (Here and
in the following we use N or Ni to count Kuhn segments, because
n or ni is reserved for the number of moles of a species). This
means that the lattice is fully occupied.

Having specified our model we want to estimate the number
of distinct polymer configurations on the lattice:

(i) We proceed by severing all bonds connecting the Kuhn
segments in each polymer chain. The individual Kuhn segments,
which we consider distinguishable at this point, are then placed
on an empty but otherwise identical lattice. There are N! ways to
accomplish this.

(ii) Now we ask: What is the probability that in one such con-
figuration all Kuhn segments do have the same neighbors which
they had before?

We first approximate the probability that a particular Kuhn seg-
ment is placed in a cell next to its polymer-neighbor Kuhn seg-
ment via

(
q−1

N

)m1−1
or

(
q−1

N

)m2−1
.

Here q is the coordination number of the lattice. This is the num-
ber of neighbors each cell has. On a square lattice q = 4; on a

simple cubic lattice q = 6. This means that if we have a polymer
partially laid out on the lattice and we put the next Kuhn seg-
ment, of which we know that it is the neighbor in the polymer,
down on the lattice blindfolded, then there are q−1 "good" cells
compared to N cells total. Of course we neglect occupancy of the
cells by previous Kuhn segments - a truly crude approximation.
Nevertheless we approximate the above probability as

(
q−1

N

)(m1−1)ν1
(

q−1
N

)(m2−1)ν2

.

(iii) This number we multiply with N!, the total number of con-
figurations. But we also must divide by the product ν1!ν2!, be-
cause two polymers of the same type are indistinguishable. All in
all we find that the number of distinguishable ways to accommo-
date the polymers on the lattice, Ω, may be approximated via

Ω≈ N!
ν1!ν2!

(
q−1

N

)(m1−1)ν1
(

q−1
N

)(m2−1)ν2

. (139)

We can now work out the entropy, which is the configuration
entropy, via

S = kB lnΩ . (140)

Using the Stirling formula, i.e.

lnN!≈ N lnN−N + ln
√

2πN ≈ N lnN−N (if N is large) , (141)

we obtain

S
NkB

= − φ1

m1
ln

φ1

m1
− φ2

m2
ln

φ2

m2
(142)

+

[
(1− 1

m1
)φ1 +(1− 1

m2
)φ2

]
ln

q−1
e

,

where φi = Ni/N.
Before we discuss this, we compute the entropy of mixing given

by

∆S
kB

=−ν1 lnφ1−ν2 lnφ2 . (143)

This is the entropy change if we combine two lattices of size N1

and N2, each filled with the respective polymers of type 1 and 2,
into one lattice of size N = N1 +N2, i.e.

∆S = S−S1−S2 , (144)

where Si = kB lnΩi and

Ωi ≈
Ni!
νi!

(
q−1

Ni

)(mi−1)νi

. (145)
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Using again νi = Ni/mi and φi = Ni/N Eq. (143) becomes

∆S
NkB

=− φ1

m1
lnφ1−

φ2

m2
lnφ2 . (146)

Interaction on the Lattice:

Thus far we have only expressions for the configuration entropy
and the attendant configuration entropy of mixing. We still need
to construct an expression for the interaction free enthalpy in a
binary system.

The likelihood for a lattice site to be occupied by a 1- or a 2-
polymer is φ1 or φ2, respectively. For a 2-polymer it is φ2. The
number of 1−2-contacts (neighboring segments) is given by

≈ φ1φ2Nq .

Analogously we obtain for the average number of 1−1- and 2−2-
contacts

≈ 1
2

φ1φ1Nq

and

≈ 1
2

φ2φ2Nq ,

respectively. The factor 1/2 prevents overcounting of contacts. Fi-
nally we assign each type of contact an interaction free enthalpy
g12, g11 and g22. Hence the total interaction free enthalpy be-
comes

Gi =

(
g12φ1φ2 +

1
2

g11φ
2
1 +

1
2

g22φ
2
2

)
Nq . (147)

This is not yet the final expression since it is common to use the
following definitions:

χ ≡− q
2kBT

(g11 +g22−2g12) (148)

χ1 ≡−
q

2kBT
g11 (149)

χ2 ≡−
q

2kBT
g22 . (150)

This means that Eq. (147) becomes

Gi

NkBT
= χφ1φ2− (χ1φ1 +χ2φ2)φ . (151)

The the first term is the interaction free enthalpy of mixing

∆Gi

NkBT
= χφ1φ2 . (152)

This agrees with our intuition, because −g11− g22 + 2g12 means
that the formation of two 1−2-contacts comes at the expense of
one 1−1- and one 2−2-contact.

The combination of Eqs. (146) and (152) yields

∆g≡ ∆G
NkBT

=
∆Gi

NkBT
− ∆S

NkB
(153)

and thus the important equation

∆g =
φ1

m1
lnφ1 +

φ2

m2
lnφ2 +χφ1φ2 . (154)

This is the Flory-Huggins equation for a binary polymer mixture
or for a polymer in solution. The quantity χ is the Flory-Huggins
parameter.

Remark: You may wonder why we do not call the gi j simply
interaction ’energy’ or interaction ’enthalpy’. The point is that
we add these expressions to (−T×) the configuration entropy or
the configuration entropy of mixing to obtain the full enthalpy
or enthalpy of mixing. However, S = −dG/dT |P,ni and since
the gi j themselves may at some point depend on T (if the fit of
the theory to the data requires it) this would mean that the gi j

themselves contribute to the entropy.

The lattice approach outlined here was pioneered indepen-
dently by Staverman and van Santen (A. J. Stavermann, J. H.
van Santen, Rec. Trav. Chim. 60, 76 (1941)), Huggins (M. L.
Huggins, J. Chem. Phys. 9, 440 (1941); Ann. NY Acad. Sci. 43,
1 (1942)) and Flory (P. J. Flory, J. Chem. Phys. 9, 660 (1941);
10, 51 (1942)) (cf. R. Koningsveld, L. A. Kleintjens Fluid phase
equilibria in macromolecular systems. Acta Polymerica 39, 341
(1988)).

4.2 Phase Separation in Polymer Mixtures

Before we come to the subject proper, we want to look at two
special types of phase separation.

A Digression - One-component Gas-Liquid Phase Behavior:

Eqs. (142) and (146) can be applied to a number of interesting
situations. We introduce the replacements φ1 = φ , m1 = m, and
φ2 = 1− φ . In addition we assume m2 = 1. This corresponds to
polymers in a solvent, where the index 2 indicates the solvent.
The resulting configuration entropy is

Scon f

nR
=− φ

m
ln

φ

m
− (1−φ) ln(1−φ)+φ(1− 1

m
) ln

q−1
e

. (155)

If we replace the solvent cells by empty cells, we describe the
same type of physical situation described by the van der Waals
equation. Here the total volume is V = bN, where b, the cell size,
also is the monomer size. We may obtain the attendant configu-
rational pressure via

Pcon f =−
∂

∂V
(−T Scon f )

∣∣∣
T
=

RT
NAb

[
−φ(1− 1

m
)− ln(1−φ)

]
.(156)

Analogous to the van der Waals approach we must add a term
accounting for attractive interaction between the monomers. Our
choice, in analogy to the van der Waals equation of state, is
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NAbP
RT

=
NAbPcon f

RT
− 1

2
NAεo

RT
φ

2 . (157)

Here εo > 0 is a parameter.
The closeness of this and the van der Waals equation of state

becomes even more clear if we compute the gas-liquid critical
parameters via ∂P

∂V |T=
∂ 2P
∂V 2 |T= 0. We find

Tc =
NAεo

R
m

(
√

m+1)2 (158)

φc =
1√

m+1
(159)

bPc

εo
=

1
2 −
√

m
(

1+
√

m ln
( √

m√
m+1

))
(
√

m+1)2 . (160)

In the limit m = 1 we therefore have

RTc

NAεo
=

1
4

φc =
1
2

bPc

εo
=

2ln2−1
8

. (161)

We may work out the relation between critical and Boyle temper-
ature, i.e.

TBoyle = 4Tc , (162)

or the critical compressibility factor

NAPc

RTcρc
= 2ln2−1≈ 0.39 . (163)

Both values are very close to the same quantities in the van der
Waals theory.

But we are not interested in a competition with the van der
Waals equation. We therefore look at the opposite limit, i.e. very
long polymer chains, which is not described by the van der Waals
equation. In the limit m→ ∞ we have to leading order

RTc

NAεo
≈ 1 φc ≈

1
m1/2

bPc

εo
≈ 1

3m3/2
. (164)

The corresponding leading behavior of the critical compressibility
factor is

NAPc

RTcρc
≈ 1

3m
. (165)

Here ρc is the number density of the monomer units - not the
polymers! Notice that the critical compressibility factor is not a
constant independent of the type of molecule as before. Fig. 36
shows the critical compressibility factor for n-alkanes (1≤ n≤ 18).
The symbols are data from E. D. Nikitin The critical properties of
thermally unstable substances: measurement methods, some results
and correlations. High Temperature 36, 305 (1998). The mass
density was converted to the monomer number density using CH2

as the monomer unit. This also implies m = n. The lines are fits to
the data using the full expressions, i.e. Eqs. (158) to (160), (solid
line) and the limiting law, Eq. (165), (dashed line). The only fit
parameter is a multiplicative constant, i.e. instead of 1/(3m) we
use 0.24/m to match the data for large m.
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Fig. 36 Critical compressibility factor for n-alkanes.

Notice also that expressing pressure, temperature, and volume
or density in terms of their critical values eliminates the material
parameters b and εo, but it does not eliminate m. This means that
the resulting equation of state is not universal in the sense that
it is different for molecules with different length, i.e. different
m. Therefore the law of corresponding states is not obeyed by
molecules with different m.

Another Digression - a Model for Liquid-Liquid Coexistence:

Another type of phase separation is observed in binary low
molecular weight mixtures. Depending on thermodynamic con-
ditions the components may be miscible or not. A simple model
describing this is based on the following molar free enthalpy ap-
proximation

g = x(l)A gA + x(l)B gB + x(l)A lnx(l)A + x(l)B lnx(l)B +χx(l)A x(l)B . (166)

Here gA and gB are the (reduced) molar free enthalpies of two
pure liquid components A and B. Mixing A and B gives rise to
the mixing free enthalpy described by the ln-terms. Note that the
mole fractions are x(l)A and x(l)B = 1−x(l)A . We immediately see that
this is identical to the lattice model which we have developed
since φ1 = N1/(N1 +N2) = x1 ≡ x(l)A and φ2 = N2/(N1 +N2) = x2 ≡
x(l)B .

Fig. 37 shows g for different values of the χ-parameter. If χ is
less than a critical value then g is a convex function of x(l)A (or x(l)B ).
This situation is analogous to the free energy in the van der Waals
theory for temperatures above the critical temperature. If χ = χc

then the curvature of g at x(l)A = 1/2 becomes zero. For still larger
values of χ a ’bump’ develops - again analogous to the free energy
in the van der Waals theory for temperatures less than the critical
temperature. Driven by the second law the system now lowers
its free enthalpy by separating into two types of regions, which
over time will coagulate into two large domains, one depleted of
A and one enriched with A. The resulting phase diagram is shown
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Fig. 37 Schematic of the xA-dependence of g for different χ-values. The
curves shown here are for χ = 1 (upper left), χ = 2 (upper right), and
χ = 3 (lower left) using gA = 1.5 and gB = 1.0. Lower right: T -xA-phase
diagram of our model of a binary mixture, where we assume that T = 1/χ.

in the lower right panel in Fig. 37. The binodal line is obtained
via a common tangent construction applied to the free enthalpy
(cf. the lower left panel). Note

∂g
∂xA

∣∣∣∣
T,P

=
1

kBT
∂G
∂NA

∣∣∣∣
T,P

=
µA

kBT
. (167)

This means that the chemical potential of A is the same along the
tangent. The common tangent is the lowest possible free enthalpy
inbetween xA,poor and xA,rich. For a given xA in this range the
quantity (xA− xA,poor)/(xA,rich− xA,poor) is the fraction of A in the
A,rich-phase relative to the total amount of A in the system. The
second special line is the spinodal line. It marks the stability limit

∂ 2g
∂x2

A

∣∣∣∣∣
T,P

= 0 . (168)

Both lines meet at the critical point where

∂ 3g
∂x3

A

∣∣∣∣∣
T,P

= 0 , (169)

because at the critical point the curvature obviously changes sign.
Note that temperature here enters via the assumed proportion-

ality χ ∝ 1/T . This assumption accounts for the observation that
phase separation usually occurs upon lowering temperature. Nev-
ertheless this is purely empirical and more complex descriptions
of χ can be found.

Fig. 38 shows experimental liquid-liquid equilibria data
for the binary mixtures water/phenol (solid squares) and
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Fig. 38 Liquid-liquid equilibria data for the binary mixtures water/phenol
(solid squares) and methanol/hexane (solid circles).

methanol/hexane (solid circles) (data from the CRC Handbook
of Thermophysical and Thermochemical Data, D. R. Lide and H.
V. Kehiaian (Eds.) CRC Press: Boca Raton (1994)). Here xA is the
mole fraction of water and methanol, respectively. Notice that
while both systems show the basic behavior predicted by our the-
ory, only the second system also exhibits the symmetry around
xA = 0.5. Nevertheless, the solid lines are ’theoretical’ results,
which where obtained using

χ =
c0 + c1xA

T
+ c2 . (170)

Here c0, c1, and c2 are constants, which are adjusted so that
the theory matches the data points. In particular the c1-term
breaks the symmetry around xA = 0.5. While it is quite common
to introduce such expressions for χ, it is not easy to provide
reasonable physical explanations of the individual terms. In
addition, the ’best fit’ usually does not correspond to a unique set
of values for c0, c1, and c2.

However, let us return to polymer mixtures. Fig. 39 shows
analogous binodal data points for a macromolecular fluid mixture
determined by observation of the cloud points. The term ’cloud
point’ refers to the turbidity observed upon passing from the ho-
mogeneous mixture into the coexistence region, where droplet
formation increases the scattering of light. In our theoretical de-
scription we assume a fully occupied lattice.

Figure 39 shows polystyrene-polybutadiene mixture cloud
point data taken from Fig. 3 in R.-J. Roe, W.-C. Zin Determination
of the polymer-polymer interaction parameter for the Polystyrene-
Polybutadiene pair. Macromolecules 13, 1221 (1980); PS2-PBD2
(solid circles); PS3-PBD2 (open squares), and PS5-PBD26 (open
triangles); mPS2 = 2220, mPS3 = 3500, mPS5 = 5200, mPBD2 = 2350,
mPBD26 = 25000. Note that φ1 refers to PS. The solid lines are the
results of a calculation analogous to the one which produced the
solid lines in Fig. 38, i.e. we determine the binodal line by the
common tangent construction applied to the mixing free enthalpy
(It does not matter whether we apply the common tangent con-
struction to the mixing free enthalpy or to the full free enthalpy.)

∆G
NkBT

=
φ1

m1
lnφ1 +

1−φ1

m2
ln(1−φ1)+χφ1(1−φ1) . (171)

Again we use Eq. (170) to describe χ. Notice that the χ-term in
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the literature sometime is denoted as an enthalpic contribution.
This is not necessarily true, as we have already pointed out,
because ∂G/∂T |P = −S, and if χ depends on temperature, as it
usually does, then the χ-term contributes to the entropy as well.
Here significant insight is needed into the microscopic interaction
of polymer systems. A good starting point for the interested
reader is R. Koningsveld, L. A. Kleintjens Fluid phase equilibria in
macromolecular systems. Acta Polymerica 39, 341 (1988).
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Fig. 39 Binodal data points and theoretical fits for three binary polymer
mixtures.

4.3 Polymers in Solution

We briefly want to discuss Eq. (171) when m2 = 1, i.e.

∆G
nRT

=
φ

m
lnφ +(1−φ) ln(1−φ)+χφ(1−φ) , (172)

where φ1 = φ . This situation describes a polymer-solvent-system.
The phase behavior of this system is in principle described by Fig.
37 (bottom-right panel), except of course without the symmetry
around xA = 0.5, i.e. φ1 = 0.5, unless m1 = 1. Setting the coeffi-
cient c1 = 0 in Eq. (170) we easily work out the critical tempera-
ture and the critical packing fraction, i.e.

c0

Tc
=

1
2
− c2 +

1√
m
+

1
2m

and φc =
1√

m+1
, (173)

according to Shultz and Flory (A. R. Shultz, P. J. Flory Phase equi-
libria in polymer-solvent systems. J. Am. Chem. Soc. 74, 4760
(1952)) (Notice that Tc and ρc do agree with the same critical pa-
rameters in the case of the previously discussed gas-liquid critical
point, cf. Eqs. (158) and (159), if co = NAεo/(2R) and c2 = 0).
These critical parameters follow via simultaneous solution of

∂ 2

∂φ 2 ∆G = 0 and
∂ 3

∂φ 3 ∆G = 0 (174)

(cf. Eqs. (168) and (169)). The critical solution temperature,
Tc, measured for different m may be fitted via (173), i.e. T−1

c vs.
m−1/2 +(2m)−1, to determine c0 and c2 experimentally (for this
particular mixture).

4.4 Osmotic Pressure in Polymer Solutions

Eq. (172) may be used to calculate the osmotic pressure Π of
polymers in solution. However, here we want to use Eq. (171)
instead where m2 is not yet equal to one. Again we employ the
Gibbs-Duhem equation at constant temperature (see for instance
R. Hentschke Thermodynamics (2nd ed.) p. 78):

V Π1 =
∫

ν1

0
dµ1(ν

′
1)

ν ′1
NA

(175)

=
∫

ν1

0
dν
′
1

ν ′1
NA

∂ 2∆G
∂ν2

1

∣∣∣
ν1=ν ′1

=− 1
NA

∂∆G/ν1

∂ (1/ν1)
.

Notice that dµ1(ν1) is due to altering the relative polymer content
of the solution, which solely affects the mixing contribution of the
free enthalpy. After some work, using n=N/NA, N =m1ν1+m2ν2,
and φi/mi = νi/(nNA), we find

Π1 =
RT
V

n2

(
−φ1

[
1− m2

m1

]
− ln(1−φ1)−m2χφ

2
1

)
, (176)

where ni = νi/NA (i = 1,2). It is instructive to expand the right
side for small n1, i.e.

Π1 =
RT
V

(
n1 +

[
1

2m2
−χ

′
]

m2
1n2

1
m2n2

+O(n3
1)

)
, (177)

where χ ′ = χ +1/m1. Or if we express the expansion in terms of
φ1

Π1 =
kBT
b3

(
φ1

m1
+

[
1

2m2
−χ

′
]

φ
2
1 +O(φ 3

1 )

)
. (178)

The quantity b3 is the cell volume, i.e. V = b3N. In the case of
polymers in solution we set m2 = 1 (solvent) whereas m1 is large.

We do not want to discuss Eqs. (176) and (177) in much
detail. A few remarks must suffice here.

Remark 1: Note that the first term in (177) is proportional to
the number concentration polymer, whereas the second term is
proportional the square of the weight concentration. That this is
indeed the case can be seen in Fig. 6.

Remark 2: From Eq. (177) we also conclude that the quantity B2

in Eq. (120), used to produce the Zimm-plot, is given by

B2 =

[
1
2
−χ

]
m1υs

mb
, (179)

where υs is the volume of a solvent molecule and mb is the mass
of a monomer or segment corresponding to one lattice cell.

Remark 3: The term in square brackets in the Eqs. (177)
and (178) is proportional to the second virial coefficient of
type-1-molecules in type-2-molecules. Suppose that the type-
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2-molecules are also chains. In fact they are the same type of
polymer as type 1 - maybe just somewhat shorter to make them
a little different. In this case we expect that χ (cf. (148)) is very
small -as is χ ′. Since 1/(2m2) is also small if the type-2-molecules
are chains, we conclude that the entire second virial coefficient
is small. Essentially we are looking at a situation which is very
similar to our discussion of the θ -solvent in the context of Eq.
(88). This equation led us to conclude that the exponent ν , in
a situation when the second viral coefficient vanishes, assumes
its ideal chain-value. Following this line of reasoning we can see
why polymer chains in a melt of identical chains should be ideal.

An insightful discussion of osmotic pressure in polymer so-
lutions, including the present result, can be found in P.-G. de
Gennes Scaling Concepts in Polymer Physics. Cornell University
Press (1988).

4.5 Swelling of Polymer Networks

Eq. (172) describes the mixing free enthalpy of a polymer-solvent
system on a lattice, where φ is the volume fraction polymer. If we
express the solvent volume fraction 1−φ via 1−φ = Ns/N, where
Ns is the number of solvent cells and N is the total number of cells,
the result is

∆G
kBT

= ν lnφ +Ns ln(1−φ)+χφNs . (180)

The quantity ν is the number of polymer chains (do not confuse
with the exponent ν!). How can we adopt this equation to the
swelling of a polymer network?

What we mean by ’network’ is depicted in Fig. 40. Panel (a)
shows a cartoon of several polymer chains or segments joined
with other chains at their ends. These junction points are cross-
links. Typically four chain segments are joined together in one
cross-link. This happens for instance due to a covalent bridge
between two linear chains. Aside from chemical cross-links two
polymer chains may be entangled when one is making a hairpin-
type bend around the other. In the following we are not interested
in the true nature of the cross-link. We merely assume that the
polymer network is a network of ν cross-linked chain segments
containing n Kuhn-lengths each. In addition, if a macroscopic
volume element inside the network, possessing the edge lengths
Lx, Ly, and Lz, it is deformed during swelling, then its new edge
lengths are L′x = λxLx, L′y = λyLy, and L′z = λzLz. We also assume
that the segment end-to-end vectors contained in this volume el-
ement will change their components analogously. Hence

Lα

Ri,α
=

L′α
R′i,α

, (181)

which is an affine deformation (cf. Fig. 40 (b)).

Here we want to study uniform swelling, i.e. λx = λy = λz ≡ λ >

1. But there is another important case, which we shall discuss
as well. Elastomers are a certain class of polymers which are
used to make rubber. Rubber possess a very small compressibility,

i.e. V ′ = L′xL′yL′z ≈ LxLyLz = V . If we stretch a rubber band by a
factor λz ≡ λ in z-direction, i.e. L′z = λ Lz, volume conservation,
i.e. λx λy λz = 1, implies λx = λy = λ−1/2.

Fig. 40 A polymer network volume element containing cross-linked chain
segments in the undeformed (a) and in the deformed (b) state. Cross-
links are indicated by the dots.

Let us come back to our original question - how must we mod-
ify Eq. (180) in order to describe the free enthalpy change during
swelling of a polymer network in contact with a solvent? In a
simple approximate theory of polymer network swelling due to
P. J. Flory and J. Rehner (J. Chem. Phys. 11 521 (1943)) the
translational entropy term ν lnφ is replaced by an elastic entropy
contribution 3ν

2 (λ 2− 1− lnλ ) when the network undergoes uni-
form swelling, i.e. λx = λy = λz ≡ λ . Note that the cross-links
provide a framework which fixes the positions of the chain seg-
ments in space, i.e. the ’translational entropy’ does not change for
these segments. However, their end-to-end distance changes dur-
ing swelling (or, more generally, during the deformation) of the
network. Thus we may remove the term which arises from the
number of ways in which we may put the polymer chains on the
lattice and replace this term by the entropy change (times −T )
due to the changes of the chain’s end-to-end distances.

Why this entropy change has the above form, we shall discuss
in detail below. Momentarily we just assume that this is indeed
the correct form and proceed. Minimizing the new ∆G with re-
spect to Ns, i.e. 0 = ∂ (∆G/(kBT ))/∂Ns, which means equating the
solvent chemical potentials inside and outside the network, yields
the Flory-Rehner equation in its standard form:

ρP
υs

mP
=− ln(1−φ)+φ +χφ 2

φ 1/3−φ/2
. (182)

The quantity ρP is the mass density of the (dry) poly-
mer, υs is the molecular volume of the solvent, and mP

is the (average) mass of a network segment. Note that
λ 3 = Vswollen/VP = 1/φ = (VP + Nsυs)/VP, where Vswollen is the
equilibrium volume of the swollen network (or gel) and VP is
the dry polymer volume. Note also that ∂φ/∂Ns = −φ 2υs/Vp
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(caveat: It is incorrect to use the above formula φ = 1−Ns/N,
assuming N = const, for the derivative of φ with respect to Ns.
This means that the volume is kept constant - which is not the
case.), ∂λ/∂Ns = υs/(3VPλ 2), as well as ρP

υs
mP

= υs
VP

ν . In the
original paper, cf. Eq. (11) in J. Chem. Phys. 11, 521 (1943),
the −φ/2-term in the denominator of Eq. (182), which results
from the − lnλ -term in the elastic entropy, is not included. This
persisted for some time (e.g. Eq. (5.9) in L. R. G. Treloar, Reports
on Progress in Physics The elasticity and related properties of
rubbers. 36, 755 (1973)), but finally ’converged’ to the above
form. However, the significance of the −φ/2-term is somewhat
questionable. The factor 1/2 resulted from a rather approximate
entropy contribution of the network nodes and, in addition, is
based on the assumption of a regular 4-fold coordinated network.
In addition, in many cases of practical importance φ 1/3 dominates
over φ/2 and the latter can be neglected. Nevertheless, Eq. (182)
ties the quantity ν to the swollen volume of a polymer network.
Therefore it provides another means for the determination of
the cross-link density (see also the footnote in the context of Eq.
(218)).

• Derivation of the elastic entropy contribution 3ν

2 (λ 2−1− lnλ ):

The entropy change ∆Sel due to the deformation of the network
has two contributions, i.e.

∆Sel = ∆Sel, f +∆Sel,v . (183)

∆Sel, f is the change in entropy without considering cross-links
explicitly relative to the undeformed state. ∆Sel,v is a correction
due to the explicit presence of cross-links.

We start with ∆Sel, f , which is given by

∆Sel, f = kB ln
[

Ω′

Ω

]
. (184)

The quantity Ω is the number of different ways by which N poly-
mer segments can be accommodated inside the undeformed vol-
ume V . Here and in the following primes indicate corresponding
quantities in the deformed state. Note that we group the seg-
ments according to their end-to-end vectors ~Ri. Hence

Ω ∝
N!

∏i Ni!
∏

i
pNi

i . (185)

Here pNi
i is the probability for finding Ni polymer segments with

end-to-end distance in the same volume element at ~Ri (all seg-
ments start at the same origin) - with pi being this probability
for a single segment. The factor N!(∏i Ni!)−1 accounts for the
distinguishable permutations of segments provided that their dis-
tinguishing feature is their end-to-end vector (i.e. the volume el-
ement it points to). The deformation redistributes the segments,
i.e. Ni→ N′i . Hence

Ω
′
∝

N!
∏i N′i !

∏
i

pN ′i
i .

Note that pi does not change! pi is the probability density p(Ri)

in Eq. (81) multiplied by the volume element at ~Ri. Therefore
pi is the ratio of the number of conformations which let a single
polymer segment end up in the volume element at ~Ri divided by
the number of all its possible conformations. This ratio, which is
based on the intrinsic polymer properties, is not altered by vol-
ume deformation provided that we keep looking at the same vol-
ume element regardless of the deformation state. What changes
though is the number of segment endpoints Ni in this volume el-
ement. Swelling for instance will dilute these points and reduce
their number to N′i < Ni.

Now we apply Stirling’s approximations to Ni! and N′i !, i.e.
lnNi! ≈ Ni lnNi−Ni and lnN′i ! ≈ N′i lnN′i −N′i . In addition we use
pi = Ni/N, p′i = N′i/N and ∑i Ni = ∑i N′i = N. The result is

ln
[

Ω′

Ω

]
= N ∑

i
p′i ln

[
pi

p′i

]
. (186)

Let’s briefly discuss pi = Ni/N and p′i = N′i/N. The first equation
applies in the undeformed state and is (hopefully) evident. As
a difinition of p′i the second equation is evident also. But what
maybe confusing is the difference between p′i and pi. As we have
already mentioned pi is the probability density p(Ri) in Eq. (81)
multiplied by the volume element at ~Ri, i.e.

pi = ∆Ri,x∆Ri,y∆Ri,z
c3

π3/2
exp
[
−c2

(
R2

i,x +R2
i,y +R2

i,z

)]
, (187)

where c2 ≡ (2〈~R2〉/3)−1. Network deformation means that the old
and the new coordinates are related via

Ri,α =
1

λα

R′i,α (α = x,y,z) . (188)

Inserting this into (187) yields

p′i = ∆R′i,x∆R′i,y∆R′i,z
c3

π3/2λxλyλz
(189)

×exp
[
−c2

(
(R′i,x/λx)

2 +(R′i,y/λy)
2 +(R′i,z/λz)

2
)]

and Eq(186) becomes
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ln
[

Ω′

Ω

]
= N ln

[
λxλyλz

]
−N ∑

i
c2 p′i

[
R′i,x

2
(

1− 1
λ 2

x

)
+ . . .

]
= N ln

[
λxλyλz

]
−N

∫
dR′xdR′ydR′z

c3 exp
[
−c2 ((R′x/λx)

2 + . . .
)]

π3/2λxλyλz

×
[

c2R′x
2
(

1− 1
λ 2

x

)
+ . . .

]

= N ln
[
λxλyλz

]
− N

2

(
λ

2
x +λ

2
y +λ

2
z −3

)
or

∆Sel, f = NkB ln
[
λxλyλz

]
− NkB

2

(
λ

2
x +λ

2
y +λ

2
z −3

)
. (190)

Hence, for a uniform volume change V ′ = λ 3V we find

∆Sel, f
iso = 3NkB lnλ − 3NkB

2

(
λ

2−1
)
, (191)

whereas for a volume conserving uniaxial stretch (λz = λ , λx =

λy = λ−1/2)

∆Sel, f
stretch =−

NkB

2

(
λ

2 +
2
λ
−3
)

. (192)

Figure 41 shows ∆Sel, f
iso /(NkB) and ∆Sel, f

stretch/(NkB) vs. λ . Any de-
viation from the undeformed state λ = 1 results in a negative en-
tropy contribution. When λ > 1 the chain segments are stretched
in both situations and the number of possible chain conformations
are reduced. When λ < 1 it is the ’ideal gas volume term’ lnλ 3,
which causes the entropy change to become negative in the case
of ∆Sel, f

iso /(NkB). In the volume conserving case of ∆Sel, f
stretch/(NkB)

a reduction of λ below one again means chain stretching albeit in
the xy-plane.

1 2 3 4 5
λ

-30

-25

-20

-15

-10

-5

0

ΔSel,f

Fig. 41 ∆Sel, f
iso /(NkB) (solid line) and ∆Sel, f

stretch/(NkB) (dashed line) vs. λ

Next we focus on ∆Sel,v, the correction to ∆Sel due to the the
cross-links. Let’s assume a network consisting of N segments. In
the most common situation we have four segments ’emanating’
from one cross-link. Since only half of each segment belongs to
this cross-link (the other half belongs to the next cross-link), there
are two full segments per cross-link or N/2 cross-links total.

Flory has argued that there is an entropy change, i.e. ∆Sel,v,
originating from the confinement of each cross-link to essentially
a small volume δV due to the network structure. We estimate this
entropy change via

∆Sel,v = kB ln
(δV/V ′)N/2

(δV/V )N/2
=−NkB

2
ln
[
λxλyλz

]
. (193)

Note that δV/V and δV/V ′ is the probability for finding a cross-
link in the small volume δV in the undeformed and in the de-
formed state, respectively. Assuming that the N/2 cross-links are
independent, which is rather crude, we obtain the first equation
in (193). Note that this contribution to the entropy does not en-
ter if the volume is conserved, i.e. ∆Sel, f

stretch is the total ∆Sel
stretch. In

other words,

∆Sel
iso = 3NkB

(
lnλ −λ

2 +1
)

(194)

and

∆Sel
stretch =−

NkB

2

(
λ

2 +
2
λ
−3
)

. (195)

In general the total ∆Sel becomes

∆Sel =
NkB

2

(
ln
[
λxλyλz

]
−λ

2
x −λ

2
y −λ

2
z +3

)
. (196)

With an extra factor −T , λ = λx = λy = λz, and N replaced by ν

this is exactly the term which replaces T ν logφ in Eq. (180).

Before moving on we want to address the important case of
∆Sel due to uniform shear depicted in Fig. 42. Again V = const.
Instead of (188) we now have

Ri,x = R′i,x− γxz R′i,z (γxz ≡
Lx

Lz
ε)

Ri,y = R′i,y (197)

Ri,z = R′i,z ,

which, after insertion into the expression for ln[Ω′/Ω], yields

∆Sel = ∆Sel, f
shear =−

NkB

2
γ

2
xz . (198)

5 Polymer Dynamics

5.1 Linear Deformation Mechanics

This subsection applies mainly to polymer networks and gels.
Experiments studying the time-dependent behavior of these
systems often involve the mechanical deformation of a bulk
sample. Even though this is a somewhat narrow scope, there are
a number of concepts and quantities with broader importance
addressed here, e.g. storage and loss modulus, complex modulus,
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Fig. 42 Uniform shear of a block of material.

compliance, etc. It is this which justifies the somewhat cursory
discussion of linear deformation mechanics at this point. On a
first reading the ’boxes’ Equations and Concepts from Isotropic
Elasticity (cf. L. D. Landau, E. M. Lifshitz Theory of Elasticity) and
Equations and Concepts from Fluid Mechanics (cf. L. D. Landau,
E. M. Lifshitz Fluid Mechanics) may be skipped over. However,
both boxes contain essential physics underlying what is called
’viscoelasticity’, the main feature of polymers in motion, which
means that they should not be neglected entirely.

Equations and Concepts from Isotropic Elasticity:

Deformation of an elastic body will displace the interior point
~r by ~u(~r). This means that the new position~r ′ is

~r ′ =~r+~u(~r) . (199)

If two points are infinitesimally close, the vector from one to the
other, d~r, transforms according to

d~r ′ = d~r+d~u(~r) = d~r+d~r ·~∇~u(~r) . (200)

The square of d~r ′ is therefore

dr′2 = (dxi +dx j∂ jui)
2 ≈ dx2

i +2dxidx j∂ jui . (201)

Here we use the summation convention and we assume that~u(~r))
varies slowly in space. The last term can be written as

2dxidx j∂ jui = 2dxidx j
1
2
(∂ jui +∂iu j)≡ 2dxidx j ui j . (202)

This defines the components of the strain tensor, i.e.

ui j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi

)
. (203)

Note that the strain tensor is the central quantity here, which
contains all the local information regarding the deformation.

Since the strain tensor is symmetric, i.e. ui j = u ji it may be
diagonalized at every point, i.e.

dr′2 =
(
δi j +2ui j

)
dxidx j

=
(

1+2u(1)
)

dx2 +
(

1+2u(2)
)

dy2 +
(

1+2u(3)
)

dz2 .

The quantities u(i) are the attendant principal values or eigenval-
ues of the strain tensor. Therefore

dx′i =
√(

1+2u(i)
)
dxi . (204)

If dV ′ = dx′dy′dz′ is the volume element in the deformed state and
dV = dxdydz is the volume element in the undeformed state, we
can use Eq. (204) to obtain

dV ′ =
√

1+2u(1)
√

1+2u(2)
√

1+2u(3)dx1dx2dx3

≈
(

1+u(1)
)(

1+u(2)
)(

1+u(3)
)

dV (205)

≈
(

1+u(1)+u(2)+u(3)
)

dV .

The quantity u(1)+u(2)+u(3) is the trace of the strain tensor. Be-
cause the trace is independent of the coordinate system this yields

dV ′ = (1+ull)dV . (206)

Note that zero trace of the strain tensor implies local volume con-
servation.

Every deformation in the type of system we are interested in,
i.e. an isotropic system, can be thought of as the being composed
of a pure shear plus a pure dilation. Therefore it is usefully to
rewrite ui j as

ui j =
1
3

δi jull +

(
ui j−

1
3

δi jull

)
. (207)

Note that the trace of the term in brackets on the right side of this
equation is zero (δll = 3). This term therefore describes a volume
conserving shear deformation as depicted in Fig. 42. The other
term describes a pure dilatation.

It is reasonable to assume that we can link ui j, or more specif-
ically these two terms individually, to a corresponding elastic
stress tensor σi j via the linear equation

σi j = K δi jull +2G
(

ui j−
1
3

δi jull

)
, (208)

where K and G are constants. In order to find out whether this
guess is sensible we study three special cases.

First we apply formula (208) to a gas and calculate the trace
on both sides. We find

3σ = 3Kull
(206)
= 3K

δV
V

. (209)
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Due to the nature of the system σ ≡ σxx = σyy = σzz. Compar-
ing this to the formula for the isothermal compressibility, κT =

−V−1δV/δP|T , we conclude σ = −δP and K = 1/κ. Therefore
σi j has units of force per area. In addition, K is the compression
modulus.

Next we apply (208) to Fig. 42, which yields

σxz = 2Guxz = G
∂ux

∂ z
= G

Lxε

Lz
(210)

or

σxz = Gγxz . (211)

Hence, σxz is a force per area in x-direction applied to the face of
the sample defined by its normal in z-direction and G is the shear
modulus. If we assume that G is entirely due to the entropy
elasticity of the chains in the sample, we can use our previous
result (198) to obtain G via

σxz =
1
V

∂ (−T ∆S(el))

∂γxz
=

N
V

kBT γxz (212)

(Note that σxz is a local quantity referring to a certain volume
element. Here all volume elements are identical and we divide
simply by the total sample volume V .) or

G =
N
V

kBT , (213)

i.e. G is the chain density in the sample times kBT .
The third case is uniaxial stretching or compression of the sam-

ple. Here it is useful to invert Eq. (208). We can do this by com-
puting the trace which yields σll = 3Kull . Inserting ull = σll/(3K)

back into Eq. (208) gives

ui j =
1

9K
δi jσll +

1
2G

(
σi j−

1
3

δi jσll

)
. (214)

We apply this equation to a stretched column as depicted in Fig.
43. The forces stretching the column are distributed uniformly
across the top and bottom faces of the column. No forces are
applied to the other faces. This implies that the only component
of the stress tensor which is not zero is σzz. Eq. (214) tells us
therefore that ui j = 0 if i 6= j. For the diagonal elements of the
strain tensor we obtain

σzz = E uzz and uxx = uyy =−νuzz , (215)

where

E =
9KG

3K +G
and ν =

1
2

3K−2G
3K +G

. (216)

The quantity E is the elastic modulus or Young’s modulus,
whereas ν is Poisson’s ratio (Again - do not confuse Poissons’s

ratio with the exponent ν we had introduced in Eq. (26).). In
the limit that the volume does not change during the deforma-
tion, which means the the compression modulus is very large -
essentially infinite, this becomes

Table 7 Elastic modulus, shear modulus and Poisson’s ratio for selected
materials.

material E [GPa] G [GPa] ν

iron 210 82 0.28
aluminum 71 26 0.34

polystyrene 3.2 1.2 0.35
rubber, unfilled ≈ 1 ·10−3 to 5 ·10−3 E/3 ≈ 0.5

rubber, filled ≈ 1 ·10−2 to 5 ·10−2 E/3 ≈ 0.5

E = 3G and ν =
1
2
. (217)

We can compare this to our previous result (195). This equa-
tion describes the entropy change in a sample containing N poly-
mer chains when the sample is uniaxially stretched without vol-
ume change. Analogous to Eq. (212) we write

σzz =
1
V

∂ (−T ∆Sel
stretch)

∂λ
(218)

=
N
V

kBT
(

λ − 1
λ 2

)
(λ≈1)
≈ 3

N
V

kBT (λ −1)

or

E = 3
N
V

kBT
(213)
= 3G (219)

*. This is a reassuring result in the sense that there appears to be
consistency between the formalism for continuous isotropic elas-
tic media in this subsection and our previous picture of elasticity
based on conformation entropy of polymer chains.

Nevertheless, we should not be overly confident. The applica-
bility of, for instance, Eq. (218) is limited as demonstrated by
an example in Fig. 44. The description of entropy elasticity un-
derlying Eq. (218) does not include the finite extensibility of real
polymer chains. The latter gives rise to the marked increase of the
stress. Even though this is the most obvious deviation, the rather
insufficient inclusion of the network structure into the derivation

* Note that Eq. (218) as well as the Flory-Rehner equation (182), describing the
equilibrium swelling of a polymer network, can be used to in principle measure the
density of cross-links in the network (for a comparative overview of these and other
methods see Anke Blume, Jens Kiesewetter Determination of the Crosslink Density of
Tire Tread Compounds by Different Analytical Methods Kautschuk Gummi Kunststoffe
9, 33 (2019)). Both equations contain the number of polymer chains segments,
defined as the (average) length of chain between two successive cross-links as one
moves along the polymer chain from one cross-link to the next. In praxis, how-
ever, Eq. (218), whose accuracy is quite limited, is replaced by a related one - the
Mooney-Rivlin equation discussed in the section on aspects of the mechanics of
polymers.
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that lead to (218) limits this equation to strains λ less than 1.5 to
2.

Fig. 43 Stretching of a rectangular sample in z-direction.
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Fig. 44 Stress-strain curve of a highly vulcanized (8% S) NR at 20°C. The
data are from Fig. 3 (graph (a)) in L. R. G. Treloar Stress-strain data for
vulcanised natural rubber under various types of deformation.Trans. Fara-
day Soc. 40, 59-70 (1944). The solid line is σzz = G(λ −λ−2) according
to Eq. (218) fitted to the first four data points with G≈ 0.35 MPa.

Finally, it is worth highlighting the following difference
between Eq. (212) and Eq. (218). σxz depends linearly on γxz,
independent of the magnitude of the shear strain. The same is
not true for the λ -dependence of σzz during stretching of the
sample, which is non-linear except in the limit λ −1� 1.

Remark 1: Figure 45 shows a measurement of stress versus tem-
perature at constant strain for different strains using an elastomer
sample. The results obtained for the larger strains meet our ex-
pectation, since the straight lines fitting the data exhibit positive
slopes in accord with Eq. (218). At small strain, i.e. the lowest
three of the curves, the slope is noticeably negative. This appar-
ently disagrees with Eq. (218). How do we explain this?

The elastomer sample possess a positive thermal expansion
coefficient. Thermal expansion, however, is due to a part in the

elastomer’s free energy, which is not part of the conformation
entropy that is underlying Eq. (218). In the experiment both
effects, the thermal expansion (causing expansion of the sample
when it is heated) and entropy elasticity (causing contraction of
the sample when it is heated), are present. At small strains the
former dominates, whereas at large strains the latter dominates.
The cross-over from one dominating to the other dominating is
called thermoelastic inversion.

Fig. 45 Thermoelastic data of natural rubber. Numbers on the right-
hand side of the graph indicate λ -values. This figure is from M. C. Shen,
D. A. McQuarrie, J. L. Jackson Thermoelastic Behavior of Natural Rubber
J. Appl. Phys. 38, 791 (1967); note: 1 dyne = 10−5 N.

Remark 2 - finite chain extension: Figures 46 and 47 illustrate
finite chain extensibility by stretching a bead-spring model chain
containing N beads in a Langevin Dynamics computer simulation.
Neighbor beads along the chain are linked via Morse potential
functions umorse(r) = D(1− exp[−a(r− ro)])

2 (here: D = a = ro =

1). Note that the Morse function has a finite depth and there-
fore the Morse bonds can break. There is no other interaction
between the beads. When the simulation box is stretched in z-
direction so is the chain, which eventually ruptures. Initially the
stress is governed by entropy elasticity. But as the elongation
of the chain increases this contribution is reduced in comparison
to the effect due to the strain on the individual bonds. Note that
Lz,oλ/N = 1 corresponds to a value of λ at which the chain is fully
stretched if the bond lengths are at their equilibrium value of ro.
Details of this calculation can be found in R. Hentschke Including
temperature effects in the theory and simulation of problems in rub-
ber reinforcement. (to appear 2024 in Advances in understanding
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thermal effects in rubber (G. Heinrich et al. (eds.), Springer Na-
ture:Heidelberg). It is also important to mention that the force
required to stretch an isolated polymer chain can be measured in
real experiments (see C. Ortiz, G. Hadziioannou Entropic Elastic-
ity of Single Polymer Chains of Poly(methacrylic acid) Measured by
Atomic Force Microscopy. Macromolecules 32, 780 (1999)).

It is prudent to note that this is not the standard approach to
finite extensibility (cf. section 7.2.3 in Rubinstein and Colby),
where it is assumed that increasing strain leads to increasing
orientation of bonds in the direction of applied load. In a sim-
ple model description each bond is linked to an energy f bcosα,
where α is the angle between the bond and the direction of the
force f . Assuming in addition that the bonds are independent, it
is easy to calculate the thermal average 〈cosα〉 (this calculation,
even though in a different context, is carried out at the beginning
of section 6.3), i.e. 〈cosα〉=L (β f b), where L (x) = coth(x)−1/x
is the Langevin function and β = 1/(kBT ). Since 〈cosα〉 = R/Nb,
where R is the end-to-end distance of an already stretched chain
consisting of N bonds of length b, we obtain f (R) from the inverse
Langevin function via

f (R) = (βb)−1L −1(R/(Nb)) . (220)

This is a simple analytic expression relating the stretching force
to the chain length in the regime of high elongation, whereas our
result in Fig. 47 is a numerical one. However, the latter provides
useful information regarding the breaking of the chain and its
dependence on temperature and bond potential parameters.

Fig. 46 Beads linked by Morse potentials (right) form a chain (left) which
is periodically extended in z-direction. The dashed line is a harmonic
approximation at the minimum of the Morse potential function.

Equations and Concepts from Fluid Mechanics:

The mass of fluid, whose uniform mass density is ρ, flowing
out of a volume V per unit time is given by

∮
V

ρ~v ·d~f =
∫

V
~∇ · (ρ~v)dV . (221)
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Fig. 47 Reduced stress vs. reduced stretch for a Morse chain simulated
using the Langevin Dynamics simulation technique. Data are obtained
at a single run without extensive averaging. The z-dimension of the
simulation box is Lz,oλ . Lines represent a fit to the data at low strain
using (218). Here N = 50 and Lz,o = 10ro.

Here~v is the fluid velocity within a volume element at position~r.
Hence, the mass continuity equation becomes

∂ρ

∂ t
+~∇ · (ρ~v) = 0 . (222)

The total force acting on the volume is

−
∮

V
Pd~f =−

∫
V
~∇PdV , (223)

where P is the pressure. Hence, the equation of motion of a liquid
volume element is

ρ
d~v
dt

=−~∇P . (224)

The same equation with d/dt = ∂/∂ t +~v ·~∇, i.e.

∂~v
∂ t

+(~v ·~∇)~v =− 1
ρ

~∇P (225)

is called Euler’s equation.
The momentum carried by the moving fluid per unit volume is

ρ~v and the attendant i-component of the momentum flux is

∂

∂ t
ρ vi =

∂ρ

∂ t
vi +ρ

∂vi

∂ t
. (226)

Using the continuity equation to replace ∂ρ/∂ t and Euler’s equa-
tion to replace ∂vi/∂ t we arrive at

∂

∂ t
ρ vi =−

∂Πik

∂xk
, (227)

where

Πik = Pδik +ρvivk . (228)

In a viscous fluid we must add an extra contribution −τ ′ik to
Πik, i.e.
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Πik = Pδik +ρvivk− τ
′
ik , (229)

which describes the irreversible ’viscous’ transfer of momentum
in the fluid. In particular,

τik =−Pδik + τ
′
ik (230)

defines the stress tensor in this context.
We can deduce τ ′ik as follows: (i) Internal friction in the liq-

uid implies that there must be velocity gradients ∂vi/∂xk, and we
assume that τ ′ik depends linearly on these gradients. (ii) If the
liquid undergoes a uniform rotation we expect no friction, i.e.
τ ′ik = 0. The velocity due to this rotation is ~v = ~ω×~r, or in terms
of its components vα = εαβδ ωβ xδ where ~ω is the angular veloc-
ity of the rotation and εαβδ are the components of the ε-tensor.
Using the properties of the ε-tensor we can quickly show that
∂vi/∂xk + ∂vk/∂xi as well as ∂vl/∂xl ≡ ~∇ ·~v (summation conven-
tion!) are zero when rotated. Therefore we express τ ′ik as a linear
combination of these two terms:

τ
′
ik = η

(
∂vi

∂xk
+

∂vk

∂xi
− 2

3
δik

∂vl

∂xl

)
+η

′
δik

∂vl

∂xl
. (231)

Note that we chose this combination so that the trace of the first
term, multiplied by the (shear) viscosity coefficient η (cf. the
selected examples in Tab. 8), is zero. The coefficient η ′ is the
second viscosity.

Here we concentrate on incompressible liquids, which accord-
ing to the continuity equation implies

~∇ ·~v = 0 (232)

and thus

τik =−Pδik +η

(
∂vi

∂xk
+

∂vk

∂xi

)
. (233)

Notice that the combination of Eqs. (227), (229), (230), and
(233) yields

∂~v
∂ t

+(~v ·~∇)~v =− 1
ρ

~∇P+
η

ρ
∆~v , (234)

where ∆ = ~∇2. This is the Navier-Stokes equation for an in-
compressible fluid. It will become important when we need to
consider hydrodynamic interactions in polymer systems. We shall
assume steady flow, i.e. ∂~v/∂ t = 0, and that the Reynolds num-
ber R, i.e.

R =
ρ

η
ul , (235)

where l is a typical linear dimension of the body in the flow of the
viscous liquid and u is the liquid’s velocity far from the body, is
small. Note that the quantity η/ρ is called kinematic viscosity.

Small R implies that the term (~v ·~∇)~v can be neglected compared
to (η/ρ)∆~v. This follows since the first term is on the order of u2/l
whereas the second one is on the order of (η/ρ)u/l2 = (1/R)u2/l.
Therefore (234) reduces to

η∆~v = ~∇P . (236)

If there is an additional external force density ~ϕ(~r) present this
equation becomes

η∆~v(~r)−~∇P(~r)+~ϕ(~r) = 0 . (237)

Let us briefly digress and solve this equation so that we do not
have to do this later when we need the solution. We replace the
components of~v(~r) and ~ϕ(~r) as well as P(~r) by their Fourier trans-
forms, i.e.

f (~r) = (2π)−3/2
∫

d3k fk exp[−i~k ·~r] . (238)

The result is

−ηk2~vk + i~kPk +~ϕk = 0 . (239)

Scalar multiplication of this equation by~k and using (232), i.e.
~k ·~vk = 0 yields

Pk = i
~k ·~ϕk

k2 . (240)

Inserting this into (239) we obtain for the flow field in~k-space

~vk =
1

ηk2

(
~ϕk−

~k(~k ·~ϕk)

k2

)
(241)

or in component form

vk,α =
1

ηk2

(
δαβ − ek,α ek,β

)
ϕk,β , (242)

where~ek =~k/k. We find the flow field in~r-space using the convo-
lution theorem, i.e.

vα (~r) = (2π)−3/2
∫

d3k
1

ηk2

(
δαβ − ek,α ek,β

)
ϕk,β exp[i~k ·~r]

or

vα (~r) =
∫

d3r′Hαβ (~r−~r ′)ϕβ (~r
′) , (243)

where

Hαβ (~x) = (2π)−3
∫

d3k
1

ηk2

(
δαβ − ek,α ek,β

)
exp[i~k ·~x] . (244)
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The last step in our solution therefore is the calculation of the
integral in Eq. (244), which is given by †

Hαβ (~x) =
1

8πηx

(
δαβ + ex,α ex,β

)
(245)

(~ex =~x/x). The quantities Hαβ are the components of the Oseen
tensor.

Now let’s return to Eq. (233), which is of more immediate
importance. Figure 48 depicts a fluid between two plates. The
bottom plate is at rest while the upper plate moves in x-direction,
causing a uniform velocity gradient in the fluid. The stationary
profile is maintained by the force Fxz on the upper plate, i.e.

τxz ∝
δvx

δ z
=

Lxε

∆t Lz
= γ̇xz , (246)

where we use the same notation as in Fig. 42. Hence

τxz = ηγ̇xz . (247)

x

z

←Lxϵ→

Lz

Fxz

vx fluid

Fig. 48 Laminar flow profile between two plates.

Table 8 Shear viscosity of selected substances

substance η [Pa s]
air 17.2 ·10−6

water 1.002 ·10−3

olive oil 80.8 ·10−3

S-SBR Mw=276 [kg/mol] ca. 1 ·1011

A Phenomenological Model for Linear Viscoelasticity:

Equation (211) together with Eq. (247) furnish the basic ele-

† Note first that the change of variables ~k′ = x~k immediately yields Hαβ (~x) ∝ x−1.
The standard solution (cf. Doi&Edwards or Grossberg&Khokhlov) assumes the
general form Hαβ (~x) = A(x)δαβ + B(x)ex,α ex,β . Taking the trace yields Hαα (~x) =
3A(x) + B(x) or, from (244) Hαα (~x) = (2π)−3 ∫ d3k 2

ηk2 exp[i~k ·~x] = (2πηx)−1. We
also have ex,α Hαβ (~x)ex,β = A(x) + B(x) and, again from (244), ex,α Hαβ (~x)ex,β =

(2π)−3 ∫ d3k 1
ηk2

(
1− (~ex ·~ek)

2
)

exp[i~k ·~x] = (4πηx)−1. Combination of the two equa-

tions for A and B yields A = B = (8πηx)−1. Note also that the ~k-integrals in Hαα

and ex,α Hαβ ex,β are easier compared to the one in (244). This is because Hαα and
ex,α Hαβ ex,β are invariant under rotations. Hence we can chose~x as our z-axis, some-
thing we cannot do in (244), and use for instance polar coordinates.

G

η

Fig. 49 Symbolic elements representing elastic and viscous contribu-
tions. The spring symbol stands for (211), whereas the dashpot symbol
represents (247).

ments in the phenomenological description of linear viscoelas-
ticity. In the following we represent (211) in simplified form via

σG = GγG (248)

and analogously (247) via

ση = η γ̇η . (249)

A pictorial representation of the two equations is shown in Fig.
49. These basic elements can be combined into simple models
describing linear viscoelastic material behavior. Three such mod-
els are depicted in Fig. 50. Here we consider model (a) only,
the so-called Kelvin-Voigt (KV) model, mainly because it is well
known to physicists.

G

η

G

(a)

(b)

(c)
η

η

G1

G2

Fig. 50 (a) Kelvin-Voigt model; (b) Maxwell model; (c) Zener model

The mathematical form of the KV-model is

σ = σG +ση γ = γG = γη . (250)

The quantity σ is the total stress and γ is the total strain. Notice
that due to the parallel arrangement of the two basic elements in
the KV-model, σ is the sum of the stresses σG and ση contributed
by the respective branches. The total strain γ, on the other hand,
is identical to the strain, γG and γη , in each individual branch.
Using (248) and (249) we obtain for the KV-model

σ(t) = Gγ(t)+η γ̇(t) . (251)

Let’s pause for a moment and compare this equation to the
equation of motion of the one-dimensional damped harmonic os-
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cillator driven by a time-dependent external force f (t), i.e.

f (t) = k x(t)+ζ ẋ(t)+mẍ(t) . (252)

Here x(t) is the position of the oscillator relative to its position at
rest, k is the spring constant, ζ is a friction constant, and m is the
mass of the oscillator. The only difference between Eqs. (251)
and (252) is the absence of the acceleration term in Eq. (251).
This means that the acceleration of the mass of a volume element
within the sheared viscoelastic sample is not important. Instead
the volume element moves according to the equilibrium of the
forces acting on it.

We remember that the long-time solution of the oscillator sub-
ject to an oscillatory force possess the same form as the force
except for a phase shift. Here we try an analogous ansatz in the
case of (251), i.e.

σ(t) = σo sin(ωt +δ ) and γ(t) = γo sin(ωt) . (253)

We may be surprised that the stress ansatz includes the phase
shift δ and not the strain. Fig. 51 depicts the type of rheome-
ter frequently used in shear experiments. The specimen, a disc-
shaped piece of rubber in this case, is clamped between two dies.
One of the dies imposes a rotary oscillation upon the specimen.
The corresponding angle at time t is ϕ(t). The other die keeps
the opposite side of the sample stationary during the oscillation,
which shears the sample. Keeping the opposite side of the sam-
ple fixed requires the torque Nϕ (t). An interesting feature of this
design is the biconical shape of the die assembly (the sample is
thick at its rim but is thin at the center), which ensures that the
strain inside the sample is uniform. The protrusions on the sam-
ple surface are necessary for a tight grip of the die on the sample.
Note that γ(t) and σ(t) are related to ϕ(t) and Nϕ (t) via

γ(t) =
ϕ(t)

φ
and σ(t) =

3Nϕ (t)
2πR3 . (254)

A typical value of φ is 7°. This means that a rotation ϕ of 1°
corresponds to a strain of ϕ/φ ≈ 14%.

Inserting the ansatz (253) into (251) and using the identity

sin(ωt +δ ) = cos(δ )sin(ωt)+ sin(δ )cos(ωt) (255)

yields

G′ ≡ σo

γo
cosδ = G (256)

G′′ ≡ σo

γo
sinδ = η ω (257)

tanδ =
G′′

G′
= τKV ω (τKV = η/G) . (258)

Here G′ is the storage modulus, G′′ is the loss modulus, and
their ratio, tanδ , is the loss tangent. The quantity τKV is a relax-

Fig. 51 A MonTech® Moving Die Rheometer with biconical die assem-
bly. The biconical rubber sample, whose radius is R, is thin at its center
and gets wider with increasing radial distance from the center. The cor-
responding angle is φ .

ation time. We see this if we set the stress in Eq. (251) equal to
zero. Separation of variables then leads to

γ(t) = γ(0)exp[−t/τKV ] , (259)

which describes the strain relaxation after the stress is ’turned
off’.

However, let’s discuss G′ and G′′ in more detail. First of, why
are they important? Their measurement yields information on the
dependence of the dynamic mechanical properties of a viscoelas-
tic material on frequency, temperature and composition. From
this information a material developer of tire tread rubber can esti-
mate a new tire’s performance during breaking or what its rolling
resistance will be compared to some other tire. G′ and G′′ are
also important in the food industry, just to give you an impression
of the range of their application, since they affect the processing
and even determine how food feels when you eat it.

G′ and G′′ are difficult quantities - both theoretically and ex-
perimentally. Our results in Eq. (256), i.e. G′ = G and G′′ = η ω,
are specific to the KV-model. Had we used the Maxwell model in
Fig. 50 the result would have been different. The Zener model,
we would find, is a combination of both the KV- and the Maxwell
model. The problem with these phenomenological models is that
they do not connect well to the molecular scale. This means
that we have to do the measurement first and decide only after-
wards which phenomenological model yields the best qualitative
description of the experimental data. Nevertheless, phenomeno-
logical models of viscoelasticity furnish a rough understanding of
the interplay between elasticity and viscosity - and they are sim-
ple, which makes them sufficiently useful.

If G′ = G and G′′ = η ω is a result specific to the KV-model,
how general are the definitions G′ ≡ σo

γo
cosδ and G′′ ≡ σo

γo
sinδ?

These definitions are general as long as the ansatz (253) works,
i.e. equations into which we insert the ansatz must be linear in
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γ(t) and σ(t). Rheometer like the one depicted in Fig. 51 are sold
with software which analyses stress-strain curves. For a linear
viscoelastic sample, i.e. the ansatz works, the experimental result
will look like the elliptical closed curve shown in Fig. 52. Each
closed curve corresponds to a complete cycle of γ(t). The enclosed
area is the dissipated energy during the cycle. Let’s calculate this
energy:

-1.0 -0.5 0.5 1.0
γ/γo

-1.0

-0.5

0.5

1.0

σ/σo

δ=0δ=π/2 δ=π/10

γo G''/σo

Fig. 52 Stress-strain cycles for three different phase shifts.

Fig. 53 Schematic of a distorted stress-strain cycle compared to its
elliptical approximation.

w =
∮

σ dγ =
∫ 2π/ω

0
σ γ̇ dt . (260)

Inserting (253) yields

w = π γoσo sinδ = πG′′γ2
o , (261)

i.e. only G′′ does contribute to w. Note that w is the dissi-
pated energy per unit volume. The three stress-strain curves in
Fig. 52 therefore describe no loss w(δ = 0) = 0, intermediate
loss w(δ = π/10, maximum loss w(δ = π/2). In other words,
the rheometer’s software will try and fit the recorded stress-strain
data with (253), which yields δ and σo and, using the definitions
G′ ≡ σo

γo
cosδ and G′′ ≡ σo

γo
sinδ , G′ and G′′. However, the experi-

mental stress-strain curves may be distorted (e.g. when the shear
modulus depends on the strain amplitude for various reasons).
A schematic example of a distorted stress-strain/torque-rotation
angle-cycle is depicted in Fig. 53. Despite this the software still
attempts to find the best fit based on the linear theory. In fact,
many experimental results for G′ and G′′ in the literature have
been obtained in this fashion (which, if one is aware of this pro-
cedure, still yields useful information ‡). Note that Eq. (260) is
completely general and independent of whether the viscoelastic
behavior is linear or not. Eq. (261) therefore could be used as an
independent definition of G′′, i.e. G′′ would solely result from the
enclosed area of the stress-strain curve.

The real ansatz (253) can be replaced by its complex version:

σ̃ = σoei(ωt+δ )
γ̃ = γoeiωt . (262)

It is common practice to define the complex modulus G∗ = σ̃/ũ.
Insertion of (262) into Eq. (251) yields

G∗ = G′+ iG′′ , (263)

i.e. G′ and G′′ are the real and imaginary parts of the complex
modulus. The inverse of the complex modulus G∗ is called com-
pliance J∗, i.e.

J∗ =
1

G∗
. (264)

The compliance is a measure for how easy it is to deform the
sample. Note

J′ =
G′

|G∗|2
and J′′ =

G′′

|G∗|2
, (265)

where |G∗|2 = G′2 +G′′2.

Finally, let us look at some experimental results. The solid sym-
bols in Fig. 54 depict the shear storage modulus of S-SBR and the
open symbols show the corresponding shear loss modulus. Both
quantities are plotted versus frequency f . You may wonder how
a machine like the one shown in Fig. 51 is capable of up to 108

Hz. Well, it is not. The rheometer acquires data at much lower
frequencies in a comparatively narrow frequency range - perhaps
0.01 Hz to 1 Hz. Using what is called time-temperature super-
position, which we discuss below, a master curve is constructed
- like the one shown in Fig. 54. The meaning of the master curve
is that if we had an instrument capable of covering the indicated
frequency range, then it would yield this result at 23°C.

Let’s concentrate on panel (b) first. Below 1 Hz we obtain the
result predicted by the KV-model in Eqs. (256) and (257). The
storage modulus is constant and the loss modulus decreases with

‡ This is under the assumption that the structure of the material is responsible for the
distortion and not, for instance, slippage in the interface between die and sample,
which may occur at large strain amplitudes.
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Fig. 54 Comparison of the master curves for non-cross-linked (a) and
cross-linked (b) S-SBR. Solid symbols: G′; open symbols: G′′.The ref-
erence temperature is 23°C. The 0 or 4 phr (parts per hundred rubber
by weight) is the amount of sulfur added in order to create cross-links
during vulcanization. The data in this figure are form Fig. 2.99 in C.
Wrana Introduction to Polymer Physics.

decreasing frequency, albeit with a power less than one. Above 1
Hz, however, G′ rises and appears to level off eventually. G′′ on
the other hand exhibits a maximum. In panel (a) the behavior
of G′ and G′′ above 1 Hz is pretty much unaltered in compari-
son to panel (b). But below 1 Hz the storage modulus decreases
with variable degree of steepness and G′′ exhibits another maxi-
mum. The main difference between the two panels is the amount
of cross-linking. The results in panel (a) are for a polymer, which
is not chemically cross-linked. Hence, when the shear frequency
is low, the polymer chains possess much more mobility as com-
pared to panel (b). Finally, Fig. 55 shows that a constant storage
modulus is not just due to chemical cross-linking. In this case the
so-called plateau modulus develops by increasing the molecular
weight. As the polymer chains get longer we expect more entan-
glement - again an obstacle to the mobility of certain modes of
motion the chains do otherwise possess.

Overall, this should be obvious at this point, our understanding
of G′ and G′′ as functions of frequency is insufficient and we
must aim for a better and more comprehensive understanding -
preferably on the molecular level.

Time-Temperature Superposition:

Figure 56 shows measurements of both the storage and the loss
modulus of a SBR sample. On the left hand side of this figure
the original data are depicted. These consist of measurements
at different temperatures over a frequency range from roughly
0.01 Hz to 1 Hz. The arrows indicate the next step. The red
data points obtained at Tr =20°C - the arbitrarily chosen reference
temperature - are left untouched. All other data sets, obtained at
temperatures Ti, are shifted horizontally along the frequency axis.
This shift is towards the right, i.e. towards higher frequencies,
when Ti < Tr. Otherwise, Ti > Tr, it is towards the left, i.e. towards
lower frequencies. The amount of shifting is controlled by the
condition that the shifted data sets form a smooth continuous
curve. The claim is that this final curve is the G′ or the G′′ at

Fig. 55 Frequency dependence of the storage modulus of polystyrene
in the molten state as function of molecular weight. This figure is
copied from C. Wrana Introduction to Polymer Physics (Fig. 2.82). Orig-
inal source: S. Onogi, T. Masuda, K. Kitagawa Rheological Properties
of Anionic Polystyrenes. I. Dynamic Viscoelasticity of Narrow-Distribution
Polystyrenes. Macromolecules 3, 109 (1970).

Tr, which one obtains with an instrument capable of scanning
the entire frequency range from 10−3 Hz to 1011 Hz in Fig. 56.
The final result looks good, but is there a justification for this
procedure?

Looking at our only expressions for G′ and G′′ thus far, i.e. Eqs.
(256) and (257), we notice that ω = 2π f appears multiplied with
the viscosity η , which is strongly dependent on temperature T .
In other words, if frequency enters into a dynamical expression g
via the product η(T )ω ≡ y, i.e. g = g(y), we can obtain the value
g(y) using either the product of η(T ′) with ω ′ or η with ω as
long as y = η(T ′)ω ′ = η(T )ω. Hence, if a particular dynamical
feature (a particular measured value for G′ or G′′ in the original
data sets depicted in Fig. 56) appears at the frequency ω ′ at the
temperature T ′, then the very same feature will appear at the
frequency ω when the temperature is T . Hence,

ω =
η(T ′)
η(T )

ω
′ (266)

converts the original frequencies into the shifted ones. Let’s find
out what the η-ratio is in terms of explicit temperature.

The temperature dependence of η is empirically described by
the Dolittle relation

η(T ) ∝ exp[A/v f (T )] . (267)

The quantity A is a constant and v f (T ) is the free volume. The
free volume is illustrated in Fig. 57 for a spherical particle which
can move freely within a larger likewise spherical cavity. The
volume indicated by the dashed circle in the figure is the volume
accessible to the center of mass of the particle, which is its free
volume in this example. Mathematically the free volume of a
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Fig. 56 Illustration of time-temperature superposition (Fig. 37 from A.
Lang, PhD thesis, University of Hannover (2018)).

particle within a potential u(~r) is given by

Fig. 57 Free volume illustration. The particle is shown in light red.

v f =
∫

V
d3r exp[−β (u(~r)−u(0))] , (268)

where β = (kBT )−1 and u(0) is the potential minimum within the
cavity. Clearly, as the shape of the particle as well as the shape of
the cavity become more complicated so does v f . Nevertheless to
leading order we may express the temperature dependence of v f

via the linear equation

v f (T ) = v f (Tr)+α(T −Tr) . (269)

Here α is a constant and Tr an arbitrary reference temperature.

Inserting (269) into (267) we obtain for the ratio η(T )/η(Tr)

aT ≡
η(T )
η(Tr)

= exp
[
− A

v f (Tr)

T −Tr

v f (Tr)/α +T −Tr

]
. (270)

This is the WLF equation, named after Williams, Landel and
Ferry, who first applied it to polymer melts (J. D. Ferry Viscoelas-
tic Properties of Polymers John Wiley & Sons:New York (1961);
M. L. Williams, J. D. Ferry Second approximation calculations of
mechanical and electrical relaxation and retardation distributions
J. Polymer Science 11, 169 (1953); M. L. Williams, R. F. Landel,
J. D. Ferry The Temperature Dependence of Relaxation Mechanisms
in Amorphous Polymers and Other Glass-forming Liquids J. Ameri-
can Chemical Society 77, 3701 (1955)). The quantity aT is also
called the shift factor. Hence, the shifted frequencies in Fig. 56
are obtained from their reference or original values ωr via

ω =
1

aT
ωr . (271)

The shift factor belonging to the master curves in Fig. 56 is
depicted in this figure as an inset and enlarged as a separate graph
in Fig. 58. aT contains the two parameters A/v f (Tr) and v f (Tr)/α,
which are adjusted until the result is a smooth master curve as
described above.

Fig. 58 Shift factor enlarged from Fig. 56. Each solid square corresponds
to a series of data points obtained in the original frequency intervall (here
0.01 Hz to 1 Hz) at the respective temperature.

Equation (270) is based on qualitative arguments and rough
approximations. Despite this, in pure polymer systems time-
temperature superposition works extremely well and is frequently
used. In fact, ’mastering’ is not restricted to G′ and G′′, but is
applied to other frequency/temperature-dependent quantities as
well. Before we leave this section, let us briefly study an impor-
tant example in the context of rubber sliding friction.

In school or in undergraduate physics courses the coefficient
of sliding friction µ is a material or interface dependent number.
The top panel in Fig. 59 depicts µ for various rubbers sliding on
glass over a wide range of sliding velocities v. This master curve
for µ is obtained using the same procedure used to obtain the
master curves for the dynamic moduli. Measurements of µ(v) in
a comparatively narrow velocity interval are carried out at differ-
ent temperatures. Subsequently the individual measurements are
combined into a smooth master curve via horizontal shifting.

The first aspect we notice is that µ is not a constant at all. It
starts low when the sliding velocity is small and it ends low when
the sliding velocity is large. Inbetween it exhibits a pronounced
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maximum. The bottom panel in Fig. 59 shows the correspond-
ing loss moduli versus frequency f . Apparently there is a close
correspondence between the maximum of µ and the maximum of
G′′ (Note that similar, but on the high frequency side truncated,
maxima can be seen in Figs. (54) and (56) as well.). Can we
understand why there should be this connection between µ and
G′′?

The sketch in Fig. 60 depicts the rubber sample sliding on a
surface. The surface’s roughness leads to the deformation of the
rubber, which in turn leads to a viscoelastic response indicated
by the two pictures of the KV model. Assuming linearity, the en-
ergy (per volume rubber) dissipated during sliding is given by Eq.
(261). We can also express the dissipated energy as the product of
the friction force, which itself is proportional to µ, times a certain
sliding distance s. Combination of the two observations suggests

Fig. 59 Comparison between the friction master curves and the loss
module master curves of five not chemically cross-linked rubbers on dry
glass. The reference temperature is 20°C, i.e. the shift factor aT = 1
at this temperature. For other temperatures we would have to know
the corresponding aT -value in order to calculate the attendant frequency.
This figure is Fig. 7 copied from K. A. Grosch The rolling resistance,
wear and traction properties of tread compounds. Rubber Chemistry and
Technology 69, 495 (1996).

µ(v) ∝ G′′( f ) , (272)

where f = f (v). If we simply assume that s is the distance
between two (identical) protrusions deforming the rubber then
v = s f , which explains why we find velocity on the x-axis of the

Fig. 60 Cartoon of a piece of rubber sliding on a rough surface with the
velocity ~v.

µ-master curve and frequency on the x-axis of the G′′-master
curve. However, it is important to note that we assume that the
only contribution to friction is hysteresis friction. This is never
quite the case, since we always have to include adhesion and
mechanical interdigitation as well. In addition, the complex
morphology of the interface between rubber and the solid must
be taken into account. Hence, it is not surprising that friction
of polymer materials is the subject of active research (e.g. B.
Lorenz, Y. R. Oh, S. K. Nam, S. H. Jeon, B. N. J. Persson Rubber
friction on road surfaces: Experiment and theory for low sliding
speeds J. Chemical Physics 142, 194701 (2015)).

The Shear Relaxation Modulus:

Our discussion of linear viscoelasticity thus far is based on the
ad hoc combination of σG and ση , i.e. the combination of Eq.
(248) and Eq. (249). The specific time or frequency dependence
of the measurable quantities, e.g. the storage modulus G′ or the
loss modulus G′′, varies depending on the kind of combination of
σG and ση we choose to study. In addition, we only know how
the calculate G′ and G′′ based on phenomenological models like
the ones depicted in Fig. 50. All in all this is not a satisfactory
situation.

In the next section we study the dynamics of polymer chain
models. Since these models possess clear physical meaning com-
pared to the phenomenological models, we want to be able to
calculate their G′ and G′′. But how do we calculate the dynamic
moduli when we do not have an equation like (251) for the KV-
model?

The equation

σ(t) =
∫ t

−∞

G(t− t ′)dγ(t ′) (273)

is a generalization of (251) and others like it. G is called the
shear relaxation modulus. The equation means that the shear
stress at time t is accumulated from many small shear amplitude
steps at previous times t ′. In essence, the contribution of a small
amplitude to the final stress depends on on the time interval t−t ′.
G(t− t ′) is a modulus, but it is not G from Eq. (248). It combines
the viscoelastic nature of the (polymer) material in one quantity.
But even if we have this G(t− t ′) for a specific chain model, how
do we then calculate G′ and G′′?

Note first that dγ(t) = γ̇(t)dt and thus (273) becomes
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σ(t) =
∫ t

−∞

G(t− t ′) γ̇(t ′)dt ′ . (274)

If for instance the strain increases instantaneously from zero to
its maximum value at t = 0, i.e.

γ(t) =

{
0 t < 0
γo t > 0

, (275)

then Eq. (274) yields

σ(t) = G(t)γo . (276)

Here we have used γ̇(t) = γoδ (t). This means that if we can realize
(275) experimentally, then we can obtain G(t) by observing the
decay of the shear stress.

Of particular interest is a sinusoidal shear strain, i.e.

γ(t) = γo sin(ωt) = γo Im(eiωt) (277)

(cf. (253)), since we already have discussed this type of shear.
Using (253) in conjunction with (255) and G′ = σo

γo
cosδ as well

as G′′ = σo
γo

sinδ (cf. (256) and (257)) we obtain

σ(t) = G′(ω)γo sin(ωt)+G′′(ω)γo cos(ωt) = γo Im
(

G∗(ω)eiωt
)
.(278)

We can now show the validity of

G∗(ω) = iω
∫

∞

0
dt G(t)e−iωt (279)

by inserting (279) into (278) §. From Eq. (279) we immediatly
find the desired equations for storage and loss modulus in terms
of G(t), i.e.

G′(ω) = ω

∫
∞

0
dt G(t) sin(ωt) (281)

and

G′′(ω) = ω

∫
∞

0
dt G(t) cos(ωt) . (282)

Application examples of these two useful formulas will be dis-
cussed in the next section.

§

σ(t) = γo Im
(

iω
∫

∞

0
dt ′G(t ′)eiω(t−t′)

)
t−t′=t′′
= γo

∫ t

−∞

dt ′′G(t− t ′′) Im
(

iωeiωt′′
)

(280)

Working out Im(...) we find that the result is again Eq. (274).

5.2 Single Chain Dynamics

In this section we discuss polymer dynamics based on a single
chain model and its refinements.

Preliminaries:

Imagine a sphere of mass m and radius R moving in a liquid of
small molecules possessing the mass density ρ and the viscosity
η . The equation of motion of (the center of mass of) this sphere
is

m~̈r =−ζ~̇r . (283)

The right hand side is Stoke’s friction force, i.e. ζ = 6πηR. This
may be expressed as

~̇v =−1
τ
~v , (284)

where~v =~̇r and

τ =
m
ζ

=
2
9

ρR2

η
. (285)

Equations (284) tells us that the initial velocity of the sphere de-
cays exponentially with a relaxation time τ, i.e.

~v(t) =~v(0)exp[−t/τ] . (286)

Assuming the liquid is water and using R = 10 nm we find τ ≈
2 · 10−11s. This is short compared to (most) relaxation times in
polymer dynamics.

It is possible and useful to tie the friction coefficient ζ to the
diffusion coefficient D in the Einstein law of diffusion (24). Our
starting point is

6Dt = 〈∆~r2〉=
∫ t

o
dt ′
∫ t

o
dt ′′〈~v(t ′) ·~v(t ′′)〉 (287)

or

6D =
d
dt
〈∆~r2〉= 2〈~v(t) · [~r(t)−~r(0)]〉 (288)

= 2〈~v(0) · [~r(0)−~r(−t)]〉

= 2
∫ 0

−t
dt ′〈~v(0) ·~v(t ′)〉

= 2
∫ t

0
dt ′〈~v(0) ·~v(t ′)〉

= 2〈~v(0)2〉
∫ t

0
dt ′ exp[−t ′/τ]

= 2〈~v(0)2〉τ(1− exp[−t/τ]) .
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If we now use 〈~v(0)2〉= 3kBT/m (note that m〈~v(0)2〉/2 is the aver-
age kinetic energy of the sphere) and assume t� τ we obtain

D =
kBT

ζ
. (289)

Next we want to study the sustained Brownian motion of our
sphere. We do this by adding a random force ~Z with 〈~Z〉 = 0 to
Eq. (283), i.e.

~̇v =−1
τ
~v+

1
m
~Z . (290)

The solution of this equation is

~v(t) =~v(0)e−t/τ +
1
m

e−t/τ

∫ t

0
dt ′~Z(t ′)et ′/τ . (291)

This can be checked by inserting (291) into (290). Here we are
interested in the auto-correlation function 〈Z(t ′)Z(t ′′)〉, since we
shall need it when we discuss the dynamics of the models of Rouse
and Zimm. We find this auto-correlation function by working out
the quantity 〈~v(t)2〉 using Eq. (291). As before 〈~v(t)2〉 = 3kBT/m
and thus

3kBT
m

= 〈~v(t)2〉= 1
m2 e−2t/τ

∫ t

0
dt ′
∫ t

0
dt ′′〈~Z(t ′) ·~Z(t ′′)〉e(t

′+t ′′)/τ .(292)

On the right hand side we have used t� τ and 〈~Z ·~v〉= 0. A guess
which solves Eq. (292), as we show via straightforward insertion,
is

〈~Z(t ′) ·~Z(t ′′)〉= 6ζ kBT δ (t ′− t ′′) . (293)

If we extend Eq. (290) by a force derived from a potential U ,
i.e. −~∇U , we obtain the Langevin equation of motion

m~̇v =−ζ~v−~∇U +~Z . (294)

We conclude our preliminary considerations with a specific ex-
ample - the Brownian motion of a one-dimensional harmonic os-
cillator, i.e.

U(x) =
1
2

k x2 , (295)

where k is the force constant. If we are interested in times sig-
nificantly greater than τ we expect that the inertia term in the
Langevin equation is not important (cf. our numerical example
in the context of Eq. (286)). Hence it is sufficient to study the
balance of forces on the right hand side of Eq. (294), i.e. in one
dimension

d
dt

x(t) =− k
ζ

x(t)+
1
ζ

Zx(t) . (296)

Here

τ
′ =

ζ

k
(297)

is another relaxation time different form τ! The solution, as we
can easily check, is

x(t) =
1
ζ

∫ t

−∞

dt ′e−(t−t ′)/τ ′Zx(t ′) . (298)

From this we obtain the position auto-correlation function

〈x(0)x(t)〉= 1
ζ 2

∫ t

−∞

dt ′
∫ 0

−∞

dt ′′e−(t−t ′−t ′′)/τ ′〈Zx(t ′)Zx(t ′′)〉 . (299)

Assuming that the auto-correlation function 〈~Z(t ′) ·~Z(t ′′)〉 is not
affected by U we can insert it from Eq. (293). Hence

〈x(0)x(t)〉= kBT
k

exp[−t/τ
′] . (300)

This is a result we shall return to when we study the Rouse chain.
Another function we shall need is the root-mean-square displace-
ment 〈(x(t)− x(0))2〉 of the oscillator, i.e.

〈(x(t)− x(0))2〉 = 〈x(t)2〉+ 〈x(0)2〉−2〈x(0)x(t)〉 (301)

= 2
(
〈x(0)2〉−〈x(0)x(t)〉

)
= 2

kBT
k

(
1− e−t/τ ′

)

≈

{
2Dt t� τ ′

2 kBT
k t� τ ′

.

This means that at short times the root-mean-square displace-
ment of the oscillator is diffusion controlled whereas for times
significantly longer than τ ′ it is potential controlled. Note that
the limit t� τ ′ really means τ � t� τ ′.

The Models of Rouse and Zimm:

Figure 61 illustrates the Rouse model. Its construction begins
with a freely jointed chain of Kuhn segments ~bi. The Kuhn seg-
ments are replaced with harmonic springs and the junctions of
adjacent Kuhn segments become beads possessing masses mi. The
force constants of the springs are

k =
3kBT

b2 . (302)

This assumes that the springs themselves are entropy elastic (cf.
Eq. (82)).

The equation of motion for bead i in the chain, analogous to
Eq. (296) for the one-dimensional oscillator, is given by
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Fig. 61 Illustration of the Rouse model.

d
dt
~r(i, t) =

k
ζ

d2~r(i, t)
di2

+
1
ζ
~Z(i, t) . (303)

But how do we explain the replacement of −x(t) by d2~r(i, t)/di2?
Note that for any bead i possessing a left and a right neighbor

−~∇iU =− [k(~ri−~ri+1)− k(~ri−1−~ri)]≈ k
d2~r(i, t)

di2
. (304)

We can also use this equation for the first bead i = 0 and the
last bead i = N, when we provide them with ’artifical’ neighbors
located at ~r−1 =~r0 and ~rN+1 =~rN , respectively. This implies the
boundary conditions

d~r(i, t)
di

= 0 for i = 0,N . (305)

Next we want to express the~r(i, t) in terms of new coordinates
~̂r(p, t) so that in these coordinates Eq. (303) assumes the form

d
dt
~̂r(p, t) =−

kp

ζp
~̂r(p, t)+

1
ζp

~̂Z(p, t) . (306)

This equation is the three-dimensional version of Eq. (296),
which we found when we studied the dynamics of a one-
dimension oscillator. If we succeed, it means that we have found
normal mode coordinates for the Rouse chain, i.e. we can study
its dynamics in terms of independent harmonic oscillators for
each mode.

Following Doi & Edwards we consider the linear transformation

~̂r(p, t) =
∫ N

0
diφ(p, i)~r(i, t) . (307)

Hence

d
dt
~̂r(p, t) =

∫ N

0
diφ(p, i)

(
k
ζ

d2~r(i, t)
di2

+
1
ζ
~Z(i, t)

)
. (308)

Using repeated partial integration we can manipulate the term
containing the double derivative d2/di2, which yields

∫ N

0
diφ(p, i)

d2~r(i, t)
di2

=
∫ N

0
di

d2φ(p, i)
di2

~r(i, t)

−
∣∣∣N
0

dφ(p, i)
di

~r(i, t) . (309)

Here we have used the boundary condition (305) upon the first
partial integration. Substituting (309) into (308) we see that we
indeed obtain (306) if the following conditions are satisfied:

d2

di2
φ(p, i) = − ζ/k

ζp/kp
φ(p, i) (310)

d
di

φ(p, i) = 0 (i = 0,N) (311)

~̂Z(p, t) =
ζp

ζ

∫ N

0
diφ(p, i)~Z(i, t) . (312)

A solution satisfying both (310) and (311) is

φ(p, i) =
1
N

cos
(

pπi
N

)
, where

p2π2

N2 =
ζ/k

ζp/kp
(313)

¶.
Finally we shall need 〈~̂Z(p, t ′) · ~̂Z(q, t ′′)〉 when we study the dy-

namics of the Rouse chain. Using (312) we have

〈~̂Z(p, t ′) ·~̂Z(q, t ′′)〉=
ζ 2

p

ζ 2N2

∫ N

0
di
∫ N

0
d j〈~Z(i, t ′) ·~Z( j, t ′′)〉 (316)

×cos
(

pπi
N

)
cos
(

qπ j
N

)
.

Inserting

〈~Z(i, t ′) ·~Z( j, t ′′)〉= 6ζ kBT δ (t ′− t ′′)δi, j (317)

(cf. (293)) the integration yields

¶ The inverse transform of (307) with φ(p, i) given by (313) is

~r(i, t) =~̂r(0, t)+2
N

∑
q=1

~̂r(q, t)cos
(

qπi
N

)
. (314)

We can check this by inserting ~̂r(q, t) given by (307) into this equation and using

∫ N

0
di cos

(
qπi
N

)
cos
(

pπi
N

)
=

N
2

δq,p(1+δq,0) . (315)
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〈~̂Z(p, t ′) ·~̂Z(q, t ′′)〉= 6
ζ 2

p

ζ N2 Nδ (t ′− t ′′)δp,q

(
1
2
+

1
2

δ0,q

)
. (318)

We do have some freedom of choice in the case of ζp and use it
to require that the right hand sides in (317) and (318) have the
same form (with ζ in (317) becoming ζp in (318)). This in turn
implies

ζ0 = ζ N and ζp = 2ζ N (p > 0) , (319)

i.e.

kp =
6π2kBT

b2N
p2 (p > 0) . (320)

Finally we adopt the two results (300) and (301) from the one-
dimensional oscillator example to the Rouse chain, i.e.

〈r̂α (p,0)r̂β (q, t)〉= δp,qδα,β
kBT
kp

exp[−t/τ
′
p] (p = 1,2, . . .) , (321)

where

τ
′
p ≡

ζp

kp
(322)

and

〈(r̂α (0, t)− r̂α (0,0))(r̂β (0, t)− r̂β (0,0))〉= 2δα,β
kBT
ζ0

t . (323)

Now we can discuss predictions of the Rouse model:

• Center of mass diffusion of the Rouse chain:

Equation (307) immediately tells us that ~̂r(0, t) is the center
of mass of the chain. Hence Eq. (323) tells us what the mean
square displacement of the center of mass is and, in particular, its
diffusion coefficient:

Dcm =
kBT
ζ0

=
kBT
ζ N

. (324)

• Rotational relaxation of the Rouse chain:

We use the relaxation time τr of the auto-correlation function
of the end-to-end vector, 〈~R(0) ·~R(t)〉 ∼ exp[−t/τr], as a measure
for rotational relaxation of the chain. Since

~R(t) =~r(N, t)−~r(0, t) (314)
= −4

N

∑
p=1(p odd)

~̂r(p, t) , (325)

we find via (321)

〈~R(0) ·~R(t)〉= 16
N

∑
p=1(p odd)

3kBT
kp

exp[−t/τ
′
p] . (326)

Obviously this is a sum over many exponentials. But of all the
relaxation times

τ
′
p =

ζp

kp
=

ζ b2N2

3π2 p2kBT
(327)

τ ′1 is the longest. This one we identify with τr:

τr ≈
ζ1

k1
=

ζ b2N2

3π2kBT
. (328)

• Storage and loss modulus in the Rouse model:

In Eq. (273) we had introduced the shear relaxation modulus
G(t) from which we can calculate G′(ω) and G′′(ω) using Eqs.
(281) and (282). But how do we find G(t)? A formal derivation
starting from the microscopic stress tensor can be found in Doi &
Edwards (chapter 4). Here we want to merely venture a guess at
a plausible form of G(t).

Note that the unit of G is energy per volume. In the limit t→ 0
all modes contribute, since none has relaxed yet. The relevant
energy is kBT ∑p times the number of chains inside the volume,
i.e.

G(0) = ρkBT ∑
p

1 . (329)

Here ρ is the number of chains per volume. If we now consider
the time behavior of G(t), we may be tempted to simply assume
that it follows the same autocorrelation function as the normal
mode coordinates in Eq. (321). However, as was pointed out
above, the unit of stress is energy per volume and, if we think
back to the one-dimensional oscillator example, the energy is
build from squares of the coordinates. Hence, rather than using
〈x(0)x(t)〉, referring to the one-dimensional oscillator, we need to
base our guess of the stress module’s relaxation on 〈x2(0)x2(t)〉 ||.

|| The calculation of 〈x2(0)x2(t)〉 is analogous to that of 〈x(0)x(t)〉 (cf. Eq.
(300)). The main exception is that we need to deal with the 4-point function
〈Zx(t1)Zx(t2)Zx(t3)Zx(t4)〉, which can be expressed as a sum over products of 2-point
functions:

〈Zx(t1)Zx(t2)Zx(t3)Zx(t4)〉= 〈Zx(t1)Zx(t2)〉〈Zx(t3)Zx(t4)〉 (330)

+〈Zx(t1)Zx(t3)〉〈Zx(t2)Zx(t4)〉+ 〈Zx(t1)Zx(t4)〉〈Zx(t2)Zx(t3)〉 .

(cf. R. Hentschke Statistische Mechanik p. 192). With this we obtain

〈x2(0)x2(t)〉−〈x2〉2 = 2k2
BT 2

k2 exp[−2t/τ
′] . (331)

Note that 〈x2〉2 (aside from a factor) is the square of the thermal energy of the
oscillator which we subtract.
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Hence

G(t) = ρkBT ∑
p

exp[−2t/τ
′
p] . (332)

Inserting this into Eqs. (281) and (282) and integrating term by
term yields

G′(ω) = ρkBT ∑
p

(ω τ ′′p )
2

(ω τ ′′p )
2 +1

(333)

and

G′′(ω) = ρkBT ∑
p

ω τ ′′p
(ω τ ′′p )

2 +1
(334)

(τ ′′p = τ ′p/2).
Let us consider this result in its two limits, i.e. ωτ ′′1 � 1 and

ωτ ′′1 � 1 (Note that we use the longest relaxation time!). In the
case ωτ ′′1 � 1

∑
p

(ω τ ′′p )
2

(ω τ ′′p )
2 +1

≈ ω
2

τ
′′
1

2
∞

∑
p=1

p−4

︸ ︷︷ ︸
=π4/90≈1.1

(335)

and

∑
p

(ω τ ′′p )

(ω τ ′′p )
2 +1

≈ ω τ
′′
1

∞

∑
p=1

p−2

︸ ︷︷ ︸
=π2/6≈1.6

. (336)

In the opposite limit, i.e. ωτ ′′1 � 1 we can replace the summation
by and integration. Hence

∑
p

(ω τ ′′p )
2

(ω τ ′′p )
2 +1

≈
∫

∞

0
d p

(ω τ ′′1 )
2

(ω τ ′′1 )
2 + p4 =

π

2
√

2
(ω τ

′′
1 )

1/2 (337)

and

∑
p

(ω τ ′′p )

(ω τ ′′p )
2 +1

≈
∫

∞

0
d p

ω τ ′′1 p2

(ω τ ′′1 )
2 + p4 =

π

2
√

2
(ω τ

′′
1 )

1/2 . (338)

The ω dependence of G′(ω) and G′′(ω) is compiled in Table 9:

Table 9

ωτ ′′1 � 1 ωτ ′′1 � 1
G′(ω) ∼ ω2 ∼ ω1/2

G′′(ω) ∼ ω ∼ ω1/2

Finally, note that every term under the summation in Eqs.
(333) and (334) corresponds to a Maxwell Model, one of the
phenomenological models discussed in appendix A - in principle

a justification, albeit with limitations, for using this phenomeno-
logical model.

Figures 62 and 63 show examples comparing experimental
data for the dynamic moduli. The experimental data points in Fig.
62 are taken from Fig. 4 in D. F. Hodgson, E. J. Amis Dynamic
viscoelasticity of dilute polyelectrolyte solutions. J. Chem. Phys.
94, 4581 (1991). The authors present their results for the dy-
namic viscoelasticity of dilute polyelectrolyte solutions, where the
polymer is poly(2-vinylpyridine). The solid lines are G′/(ρkBT )
and G′′/(ρkBT ) from Eqs. (333) and (334) using τ ′′p = K/p2 and
K = 0.7, i.e. K is the only adjustable parameter. The overall agree-
ment between the experiment and the Rouse prediction is quite
reasonable. However, there are many points here which we do
not address. For a detailed discussion the reader is referred to
the original publication. The additional dashed lines correspond
to Zimm’s modification of the Rouse model, which we discuss in
the following. The experimental data points in Fig. 63 are taken
from Fig. 5 in R. Johnson, J. Schrag, J. Ferry Infinite-Dilution
Viscoelastic Properties of Polystyrene in θ -Solvents and Good Sol-
vents. Polymer Japanese 1, 742 (1970) for the case of two differ-
ent good solvents (ν = 3/5). As in the previous comparison, the
solid lines are gG′/(ρkBT ) and gG′′/(ρkBT ) from Eqs. (333) and
(334) τ ′′p =K/p2, and K = 0.008. Here an additional factor g= 110
was used to shift the curves. The dashed lines again correspond
to Zimm’s modification of the Rouse model.
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Fig. 62 Reduced storage modulus (open symbols) and reduced loss
modulus (closed symbols) vs ω times a reduced relaxation time. Data
from Fig. 4 in D. F. Hodgson, E. J. Amis Dynamic viscoelasticity of dilute
polyelectrolyte solutions. J. Chem. Phys. 94, 4581 (1991).The different
symbols indicate molecular weights ranging from 3 · 104 to 1 · 106 MW
in 0.0023 M HCl/ethylene glycol at a concentration of 2.0 mg mL−1.
The solid lines are G′/(ρkBT ) and G′′/(ρkBT ) from Eqs. (333) and (334)
using τ ′′p = K/p2 and K = 0.7. Dashed lines are G′/(ρkBT ) and G′′/(ρkBT )
obtained with the Zimm model. In this case τ ′′p = K/p3ν (K = 0.7 and
ν = 3/5).

The Rouse model describes G′ and G′′ of polymers in dilute
solution and, as we shall see, of ’short’ polymers in the melt rea-
sonably well (’reasonably well’ may not always apply. Neverthe-
less, in a rough sense the statement is a fair assessment.). How-
ever, both the center of mass diffusion as well as the rotational
diffusion, specifically their dependence on N, are generally incor-
rect. But why? Even though the beads in the Rouse chain are
mechanically coupled, every bead interacts independently with
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Fig. 63 Reduced storage modulus (bottom symbols) and reduced loss
modulus (top symbols) vs ω times a reduced relaxation time. Data from
Fig. 5 in R. Johnson, J. Schrag, J. Ferry Infinite-Dilution Viscoelastic Prop-
erties of Polystyrene in θ -Solvents and Good Solvents. Polymer Japanese
1,742 (1970). The solid lines are gG′/(ρkBT ) and gG′′/(ρkBT ) from Eqs.
(333) and (334) using g = 110, τ ′′p = K/p2, and K = 0.008. Dashed lines
are G′/(ρkBT ) and G′′/(ρkBT ) obtained with the Zimm model. In this
case τ ′′p = K/p3ν (K = 0.008 and ν = 3/5).

the surrounding solvent. The drag force on the Rouse chain is
therefore the sum over the drag forces on individual beads. Con-
sequently the overall drag coefficient scales according to N. The
Rouse model neglects the hydrodynamical coupling of the beads.
In the following we shall fix this problem and we shall see that the
main difference is that the chain in a solvent diffuses and rotates
as one ’object’ possessing linear dimension proportional to Nν .

We began our discussion of chain dynamics by looking at a
sphere moving within a liquid while experiencing Stoke’s friction
proportional to its velocity. Each bead in the Rouse model is such
a sphere, which up to now we have treated as hydrodynamically
independent. This is not correct. Instead we express the force a
bead i exerts on its surroundings due to hydrodynamic interaction
as

~Fi = 6πηR [~vi−~v(~ri)]≡ ζ [~vi−~v(~ri)] . (339)

Here ~vi is the velocity of bead i in the ’laboratory’ frame and ~v(~r)
is the flow field in the laboratory frame created by the sum of the
corresponding forces ~ϕ(~r) of all other beads, i.e.

~ϕ(~r) = ∑
j(6=i)

δ (~r−~r j)~Fj(~r j) . (340)

The equation linking~vi to ~ϕ(~r) is Eq. (243). Hence,

~vi =
~Fi

ζ
+~v(~ri) (341)

=
~Fi

ζ
+
∫

d3r′H(~r−~r ′)~ϕ(~r ′)

=
~Fi(~ri)

ζ
+ ∑

j(6=i)
H(~ri−~r j)~Fj(~r j)

or

~vi = ∑
j

T(i, j)~Fj , (342)

where

T(i, j) =

{
I
ζ

(i = j)

H(~ri−~r j) (i 6= j)
(343)

is the mobility matrix (I is the unit matrix.).
Applying (342) to the Rouse equation (303) we see that in or-

der to integrate hydrodynamic interactions we must modify (303)
to

d
dt
~r(i, t) = ∑

j
T(i, j)

(
k

d2~r( j, t)
d j2

+~Z( j, t)
)

, (344)

where

〈Zi,α Z j,β 〉= 2(T)−1
αβ

(i, j)kBT δ (t− t ′) . (345)

Note that T(i, j) does depend on~r j, which means that (344) is
a nonlinear equation. Zimm avoided this difficulty by replacing
T(i, j) with its equilibrium average 〈T(i, j)〉, i.e.

〈T(i, j)〉=
∫

d3ri j p(ri j)T(i, j) , (346)

where p(ri j) is, for instance, the ideal chain distribution (81).
This step, called pre-averaging in the literature, yields the Zimm
model, i.e.

d
dt
~r(i, t) =

∫ N

0
d j〈T(i, j)〉

(
k

d2~r( j, t)
d j2

+~Z( j, t)
)

, (347)

where additionally the sum over j is replaced by an integration.
Instead of Eq. (81), the formula for p(ri j) for the ideal chain,

we are going to use Eq. (130) to evaluate 〈T(i, j)〉. Remember
that we found Eq. (130) by using scaling ideas and that this dis-
tribution function applies to ideal as well as real chains. Hence,

〈Tαβ (i, j)〉=

∫
d3r exp[−kν

(
r

b|i− j|ν
) 1

1−ν

]
δαβ+er,α er,β

8πηr∫
d3r exp[−kν

(
r

b|i− j|ν
) 1

1−ν

]

(348)

**. Note that

** kν can be determined via 〈r2〉= b2N2ν , which yields

kν =

(
Γ[5(1−ν)]

Γ[3(1−ν)]

) 1
2(1−ν)

=

{
3/2 (ν = 1/2)
≈ 1.11 (ν = 3/5)

(349)
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〈er,α er,β 〉=
1
3

δαβ . (350)

The r-integrations can be done with the help of, for instance,
Mathematica. The final result is

〈T(i, j)〉= t(i− j)I (351)

with

t(i− j) =
1

6πη

Γ[2(1−ν)]

Γ[3(1−ν)]

k1−ν
ν

b|i− j|ν
. (352)

In the case of an ideal chain (ν = 1/2 and kν = 3/2) t(i− j) be-
comes

t(i− j) id.ch.
=

1
η(6π3b2|i− j|)1/2

. (353)

The equivalent to the Rouse equation in normal mode coordi-
nates, i.e. Eq. (306), is here

d
dt
~̂r(p, t) = ∑

q
t̂pq

(
−kq~̂r(q, t)+~̂Z(q, t)

)
, (354)

where kq is given in Eq. (313) and

t̂pq =
1

N2

∫ N

0
di
∫ N

0
d j cos

(
pπi
N

)
cos
(

qπ j
N

)
t(i− j) . (355)

In the case p = 0 or q = 0 the result is

t̂0q = t̂ δ0,q or t̂p0 = t̂ δp,0 . (356)

with

t̂ =
1

3πη

k1−ν
ν Γ[2(1−ν)]

(1−ν)(2−ν)Γ[3(1−ν)]

1
bNν

. (357)

In the case p,q > 0 we resort to an approximate solution. Using
the substitution j− i = l we have

1
N2

∫ N

0
di
∫ N−i

−i
dl cos

(
pπi
N

)
cos
(

qπ(l + i)
N

)
|l|−ν

≈ 1
N2

∫ N

0
dicos

(
pπi
N

)
cos
(

qπi
N

)
︸ ︷︷ ︸

=(N/2)δp,q

∫
∞

−∞

dl cos
(

qπl
N

)
|l|−ν︸ ︷︷ ︸

=2(N/(πq))1−ν Γ[1−ν ]sin(πν/2)

− 1
N2

∫ N

0
dicos

(
pπi
N

)
sin
(

qπi
N

)∫
∞

−∞

dl sin
(

qπl
N

)
|l|−ν︸ ︷︷ ︸

=0

.

Hence, for p,q > 0

t̂pq ≈
1

6πη

Γ[1−ν ]Γ[2(1−ν)]

Γ[3(1−ν)]

(
kν

π p

)1−ν

sin
(

πν

2

) 1
bNν

δp,q .(358)

Note that for ν = 1/2

t̂00 =
8

3(6π3)1/2ηb
√

N
(359)

and

t̂11 ≈
1√

2(6π3)1/2ηb
√

N
. (360)

We observe that due to the δpq in the formulas (356) and (358),
Eq. (354) truly assumes the form of its counterpart, Eq. (306), in
the Rouse model, i.e.

d
dt
~̂r(p, t) = t̂pp

(
−kp~̂r(p, t)+~̂Z(p, t)

)
. (361)

Hence we directly obtain Zimm’s version of our previous Rouse
results:

• Center of mass diffusion of the Zimm chain:

Since 1/ζo = t̂00 we find for the case ν = 1/2 using Eq. (359)

Dcm = kBT t̂00 =
8kBT

3(6π3)1/2ηb
√

N
. (362)

In general, i.e. for general ν , we see from (357) that

Dcm ∝ N−ν . (363)

This makes good physical sense. Our starting point was Stoke’s
friction with a drag coefficient ζ proportional to the Radius
R of the sphere. The linear dimension of a polymer chain is
proportional to Nν and thus the corresponding drag coefficient
is expected to be proportional to Nν . This type of reasoning of
course depends on the range of the hydrodynamic interaction,
which must be greater than the polymer dimension. However,
the r−1-dependence in the Oseen tensor means that the hydrody-
namic interaction is virtually infinite.

• Rotational relaxation of the Zimm chain:

We seek the rotation relaxation time τr in the case of the Zimm
model. According to Eq. (328)

τr ≈ τ
′
1 =

ζ1

k1
. (364)

Here ζ1 = 1/t̂11. t̂11 is given in Eq. (360) for the ideal chain and in
the general case we can use Eq. (358). But what about k1? Does
Eq. (320), derived in the context of the Rouse model, still apply
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when ν = 1/2 and what is k1 when the chain is a real chain, i.e.
ν = 3/5? One answer is that Eq. (320) still applies when ν = 1/2.
In order to verify this statement and, in addition, find the answer
to the second question we need to calculate kp explicitly via the
formula

〈~̂r(p)2〉= 3kBT
kp

. (365)

Note that kp is the force constant of an individual uncoupled os-
cillator. The above formula gives the position fluctuations of this
oscillator (mode) for a particular temperature. For example, let
us consider the one-dimensional oscillator with the potential en-
ergy (295). In this case

〈x2〉=
∫

∞

−∞
dxx2 exp[−βkx2/2]∫

∞

−∞
dxexp[−βkx2/2]

=
1

βk
, (366)

where β = (kBT )−1. The factor 3 in Eq. (366) results since the
oscillator is three-dimensional.

For a reason not immediately obvious we do not use

~̂r(p, t) =
1
N

∫ N

0
dicos

(
pπi
N

)
~r(i, t) (367)

directly but

~̂r(p, t) =− 1
pπ

∫ N

0
disin

(
pπi
N

)
d~r(i, t)

di
(368)

instead, which follows from (367) via partial integration. Hence

〈~̂r(p)2〉= 1
p2π2

∫ N

0
di
∫ N

0
d j sin

(
pπi
N

)
(369)

×sin
(

pπ j
N

)
〈d~r(i, t)

di
· d~r( j, t)

d j
〉 .

Now we use

d~r(i, t)
di

· d~r( j, t)
d j

=−1
2

d2

did j
(~r(i, t)−~r( j, t))2 (370)

in conjunction with

〈(~r(i, t)−~r( j, t))2〉= b2|i− j|2ν . (371)

Hence

〈d~r(i, t)
di

· d~r( j, t)
d j

〉= (2ν−1)νb2|i− j|2(ν−1) . (372)

Substituting this back into Eq. (369), we are left with an integra-
tion just like the one in the case of t̂pq. Using as before the substi-
tution j− i = l and the subsequent extension of the l-integration
limits to ±∞ we obtain (approximately)

〈~̂r(p)2〉= νΓ[2ν ]

π2ν+1 sin(π(1−ν))
b2N2ν

p2ν+1 (1−δ0p) . (373)

Inserting ν = 1/2 into this formula and using (366) yields, as pre-
viously formulated as a question, Eq. (320) for kp. More generally
we obtain,

kp ∼
kBT p2ν+1

b2N2ν
. (374)

Hence, for ν = 1/2

τr = τ
′
1 =

ζ1

kp
=

η(bN1/2)3
√

3πkBT
≈ 0.33

η(bN1/2)3

kBT
(375)

and for ν = 3/5

τr = τ
′
1 ≈ 0.18

η(bN3/5)3

kBT
, (376)

and generally

τ
′
p ∼

η(bNν/pν )3

kBT
. (377)

If we compare this result of the Zimm model with τ ′p in the Rouse
model (Eq. (328)), we find

τ ′p(Rouse)
τ ′p(Zimm)

∼
(

N
p

)2−3ν

, (378)

where 2− 3ν is equal to 1/2 (1/5) for ν = 1/2 (3/5). This
means that long wavelength modes in particular (small p)
have significantly longer relaxation times in the Rouse model
compared to the Zimm model.

• Storage and loss modulus in the Zimm model:

The functional form of the moduli in the Eqs. (335) and
(336) remains the same. What is different is τ ′p and there-
fore τ ′′p = τ ′p/2. This means that the two limits, i.e. ωτ ′′1 � 1
and ωτ ′′1 � 1, and thus Eqs. (335) through (9) need modification:

In the case ωτ ′′1 � 1

∑
p

(ω τ ′′p )
2

(ω τ ′′p )
2 +1

≈ ω
2

τ
′′
1

2
∞

∑
p=1

p−(6ν)

︸ ︷︷ ︸
=ζ (6ν)=

 ≈ 1.2 ν = 1/2
≈ 1.1 ν = 3/5

(379)

and
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∑
p

(ω τ ′′p )

(ω τ ′′p )
2 +1

≈ ω τ
′′
1

∞

∑
p=1

p−(3ν)

︸ ︷︷ ︸
=ζ (3ν)=

 ≈ 2.6 ν = 1/2
≈ 1.9 ν = 3/5

. (380)

In the opposite limit, i.e. ωτ ′′1 � 1,

∑
p

(ω τ ′′p )
2

(ω τ ′′p )
2 +1

≈
∫

∞

0
d p

(ω τ ′′1 )
2

(ω τ ′′1 )
2 + p6ν

= (381)

π

6ν
csc(

π

6ν
)︸ ︷︷ ︸

=

 ≈ 1.2 ν = 1/2
≈ 1.1 ν = 3/5

(ω τ
′′
1 )

1/(3ν)

and

∑
p

ω τ ′′p
(ω τ ′′p )

2 +1
≈
∫

∞

0
d p

ω τ ′′1 p3ν

(ω τ ′′1 )
2 + p6ν

= (382)

π

6ν
sec(

π

6ν
)︸ ︷︷ ︸

=

 ≈ 2.1 ν = 1/2
≈ 1.4 ν = 3/5

(ω τ
′′
1 )

1/(3ν) .

The ω dependence of G′(ω) and G′′(ω) in the Zimm model is
compiled in Table 10:

Table 10

ωτ ′′1 � 1 ωτ ′′1 � 1
G′(ω) ∼ ω2 ∼ ω1/(3ν)

G′′(ω) ∼ ω ∼ ω1/(3ν)

Note that small differences in the factors aside, the ω-dependence
in the low frequency limit is the same as in the Rouse case. In
the high frequency limit the power of ωτ ′′1 is different and in the
Zimm model depends on ν . However, as the comparisons in the
Figs. 62 and 63 show, the difference between the dynamic moduli
computed with the Zimm model for ν = 3/5 are not so very dif-
ferent from the corresponding Rouse results. Note however that
no particular effort is made to ’tweak’ the parameter K, which is
different in the two models but here is assumed to be the same to
keep things simple. Note also in this context that the dependence
of τ ′′1 on N in the two models is different, i.e.

τ
′′
1 ∼

{
N2 Rouse
N3ν Zimm

. (383)

5.3 Entanglement

Figure 64 is a copy of Fig. 55 in which the red lines possess slopes
predicted by the Zimm model for the storage modulus G′ at low
and high frequencies, respectively. Note that the experimental
system is a melt and thus ν = 1/2. The frequency dependence
of G′ observed previously for polymers in dilute solution, i.e. in
Figs. 62 and 63, here is only seen when the chains are short. The
limiting molecular masses in Fig. 64 correspond to about 0.9 ·102

and roughly 6 ·103 monomers per polymer chain, respectively. It
appears that when the chains exceed a certain length, somewhere
above 102 monomers, the two limits become separated by a third
frequency range in which the storage modulus is constant and
independent of molecular weight (or chain length). How do we
explain the occurrence of this so-called plateau modulus?

From the point of view of the individual chain its environment
is an ’entangled mess’ of other chains. How does this chain move?
Fig. 65 is a cartoon of an idea which has proven useful with re-
gard to this question. The central part of the cartoon depicts a
polymer chain consisting of N monomers (or perhaps Kuhn seg-
ments). Again there are statistical ’blobs’ containing on average
Ne monomers along this chain stuck inside a ’tube’. The diameter
of the tube corresponds to the linear dimension of the blobs. But
what defines the length Ne and thus the linear dimension of the
blobs? It is assumed that this dimension is determined by ’entan-
glements’, i.e. interlaced ’hairpins’ formed by the polymer with
its neighbors (or even with itself). Hence the polymer contour
length between hairpins is Ne, the entanglement length. When
the polymer moves, ’trying’ to free itself from the entanglements,
its motion is akin to a snake moving forward via a looping motion
of its body. Hence the term ’reptation’ was coined in this context
by de Gennes. Note that the lower left corner of Fig. 65) is a
closeup view of a section of the aforementioned tube. The entire
tube contains and is made up by the entire polymer chain. This
tube itself is a random walk with a characteristic end-to-end dis-
tance or linear dimension Rtube. In the following we exploit this
picture using the scaling concept previously developed.

The entanglements divide the entire polymer chain into N/Ne

’pieces’. To the Ne effective monomers or Kuhn segments between
two entanglements we apply the formulas (92) and (101) (poly-
mer inside a tube), where Nξ = Ne and ξ = De. Here De, given
by

De ∼ Nν
e , (384)

is the diameter of a tube along which the polymer chain reptates.
The tube’s contour length, i.e. the length of tube containing the
polymer, is

L =
N
Ne

De . (385)

The time τrep it takes for the polymer to reptate this length we
describe in terms of Einsteinian diffusion, i.e.

 1–91 | 55



τrep ∼
L2

D
, (386)

where D is the diffusion constant of the chain given by

D∼ kBT
N

. (387)

You may wonder why here we use D∼N−1 instead of D∼N−ν as
in (363)? This is because the polymer does not move as a ’blob’
of effective diameter Nν ! Instead of Nν we decide that N is the
better scaling variable. Putting the last four equations together
we find

τrep ∼
N3

kBT Ne
, (388)

where we have used ν = 1/2.

Fig. 64 Frequency dependence of the storage modulus of polystyrene in
the molten state as function of molecular weight. This figure is identical
to Fig. 55 except for the red lines. The solid lines possess the slope
2, whereas the dotted line has slope 2/3. These are the limiting slopes
expected for logG′ vs. logω according to the Zimm model (cf. Tab. 10.)

We understand the significance of this formula if we apply it to
Fig. 64. Note that the horizontal separation of the red solid lines
is about six orders of magnitude on the frequency axis. The ratio
of the largest molecular weight to the smallest, which is reason-
ably close to the molecular weight at which the G′-curves begin
to show the bend which develops into the plateau, is roughly 102.
This means that the attendant ratio of the τreps for the two molec-
ular weights is (again roughly) 106 - which are just the above six
decades. What Eq. (388) is telling us is that for times longer than
τrep the chain does not ’remember’ its original tube and effectively
acts like the Rouse chain in the low frequency limit!

There is another quantity which we can compute to support
this notion - the plateau modulus Go, i.e. the value of G′ on the
plateau. We use Eq. (213), i.e.

Fig. 65 Cartoon of a chain reptating on a path determined by entangle-
ments with other chains or other sections of itself.

Go =
c

Me
kBT , (389)

(Note that N in (213) is the number of chains - in the present case
the number chain sections of length Ne between entanglements
(or physical cross-links)!). The quantity c is the polymer mass
density and Me ∝ Ne is the mass of the segment of length Ne. Again
we use the mass of the shortest chain in the figure, i.e. 8.9 kg
mol−1 (The mass of the segment between two entanglements is
about twice this value. But we have used the curve obtained for
this mass in our above estimate and thus we stick to it here as
well. After all - this is a rough calculation!). For the density we
use c = 103 kg m−3. The result is Go ≈ 4 · 105 Pa. This is not too
bad!
Remark: If we compare the storage modulus in the two panels of
Fig. 54, we notice that the one in panel (a) behaves just as if it
was one of the curves somewhere in the middle of Fig. 55. How-
ever, the storage modulus in panel (b) shows a plateau which ap-
parently persists at even the smallest frequencies. In this case the
chemical cross-links prevent the diffusion of the chain segments
and, effectively, τrep = ∞.

An even better quantity to support reptation is the translational
diffusion of the chains. Here we mean spatial center of mass dif-
fusion and not the diffusion along the tube’s contour as described
by Eq. (386). According to our above picture the tube’s contour
is a random path and its linear dimension Rtube should scale as

Rtube ∼ N1/2 . (390)
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This implies for the translational center of diffusion coefficient
Dcm

Dcm ∼
R2

tube
τrep

∼ 1
N2 . (391)

The above result of the reptation model is quite distinct from our
previous results for Dcm based on the Rouse or the Zimm model
(cf. Eqs. (324) and (363)).

The current experimental status is that neither τrep ∼ N3 nor
Dcm ∼ N−2 are quite correct. Perhaps this is not too surprising.
Scaling, as elegant as it may be, relies on physical intuition, which
may not capture the phenomenon in its entirety. Experiments ap-
pear to support exponent values which are roughly 10% larger,
i.e. 3.4 instead of 3 and 2.3 instead of 2. Fig. 66 shows a figure
copied from the article T. P. Lodge Reconciliation of the Molecu-
lar Weight Dependence of Diffusion and Viscosity in Entangled Poly-
mers. Phys. Rev. Lett. 83, 3218 (1999).

Detailed discussions/calculations related to entanglement can
be found in the books written by those who invented these ideas,
i.e the books by Doi and Edwards and de Gennes.

Fig. 66 Self-diffusion in the melt obtained from hydrogenated or deuter-
ated polybutadiene samples adjusted to 175°C, as a function of molecular
weight. Copy of Fig. 1 in T. P. Lodge Reconciliation of the Molecular
Weight Dependence of Diffusion and Viscosity in Entangled Polymers. Phys.
Rev. Lett. 83, 3218 (1999).

5.4 The Glass Process

In this section we discuss what is commonly called the glass
transition. We start with a number of observation which can be
made in this context. Subsequently we shall focus on one par-
ticular theoretical concept, the so called mode coupling theory.
Even though mode coupling theory does not appear to be the
ultimate answer to all the observations, it yields partial answers
and interesting insights despite a strongly simplified presentation.

Looking at Figs. 54 or 56 we notice that the storage modu-
lus rises by about three orders of magnitude beyond its plateau

value when the frequency becomes very high. The loss modulus
on the other hand exhibits a pronounced maximum in the limit
of high frequencies. Instead of changing frequency at constant
temperature, we can hold the frequency constant and change the
temperature. An example where this is done is shown in Fig. 67.
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Fig. 67 Logarithm of the relaxation modulus (10 s) versus tempera-
ture. The polymer is isotactic (semicrystalline) and atactic (amorphous)
polystyrene. Low M and High M stand for low and high molecular weight,
respectively. This figure is adopted from Fig. 1.15 in U. W. Gedde Poly-
mer Physics Chapman & Hall: London (1995).

This figure shows the logarithm of the relaxation modulus for
different types of polystyrene versus temperature. An atactic poly-
mer has a very irregular structure along its contour length. The
structure of bulk samples of such polymers is therefore amor-
phous. In the case of atactic polystyrene, as we start from high
temperatures, we make the same observations which we already
discussed in the context of Figs. 55 and 64. Depending on molec-
ular weight, we observe a plateau of a certain ’width’. If the poly-
mer is chemically cross-linked the plateau extends to the highest
temperature (cf. Fig. 54 (b)). Below around 120°C the relaxation
modulus rises and finally levels off about three orders of magni-
tude above the plateau. So, what is happening here? We have
already discussed the regions labeled V, IV, and III in the case of
amorphous polymers. But what is going on in the regions II and
I?

A simple low-molecular liquid will undergo a phase transition
into a crystalline phase if the temperature is continuously
decreased. Can we expect something of this nature in the case of
polymers? Not really. The attendant ordering necessary to align
and pack the polymer chains is entropically very unfavourable.
If the polymer’s architecture is very regular, e.g. it is isotactic,
then ordering, at least in small spatial regions (∼ 10 nm), can
be favourable. In this case the bulk polymer matrix may be
composed of crystallites surrounded by amorphous polymer.

Remark 1: If we are willing to invest work, e.g. by straining the
polymer sample, this situation may be attained at temperatures
when ordinarily the polymer is amorphous throughout. This
is called strain crystallization (cf. section 6.1). The most
prominent polymer in this context is 1,4-cis-isoprene in natural
rubber.
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Remark 2: The degree of crystallinity can be as high as 90%
for certain low molar mass polyethylenes and as low as 5% for
polyvinylchloride.

The crystallite’s effect on the modulus is similar to the effect
of cross-links, i.e. they increase the modulus. In Fig. 67 this ex-
plains the curve labeled ’Semicrystalline’. The increase in region
II upon lowering the temperature is much less pronounced since
the amorphous volume fraction in the sample is smaller compared
to the crystalline volume fraction, which does nothing special at
this point.

All in all, regions I and II appear to be distinguished by a hard,
i.e. very immobile, but still amorphous polymer matrix or a cer-
tain amorphous volume fraction thereof. In region I the amor-
phous polymer is in a glassy state and the transition to this state
in region II is called the glass transition. The glass transition is
associated with the glass transition temperature Tg - in general
the temperature beyond which the storage modulus has levelled
out. However, this is essentially a mere definition, since the glass
process extends over a finite temperature range and other fea-
tures, e.g. inflection points, may be used to define Tg. In addition
Tg may be measured with different experimental methods produc-
ing somewhat different results.

The glass process, and therefore any value of Tg, is rate depen-
dent. This is illustrated in the following figures. Figure 68 shows
the specific volume versus temperature at different heating rates.
Figure 69 shows the same for the heat capacity. Finally, Fig. 70
shows the dynamic moduli at different frequencies as the temper-
ature passes through Tg. Especially, the last figure, if we compare
it to Fig. 67, tells us that we are looking at regions II and I in
the Fig. 67. Figure 70 does not surprise us, as we do expect this
behavior based on our discussion of time-temperature superpo-
sition in amorphous polymer systems. Increasing the rate or fre-
quency shifts ’everything’ towards higher temperatures. However,
Fig. 71, which is an expanded version of Fig. 70, shows some-
thing new. There is another maximum of the loss modulus at a
temperatures below what we just defined as Tg. This is another
relaxation process.

Why can we tell that this is a relaxation process? Remember
our calculation of Eqs. (333) and (334) based on the relaxation
modulus (332). If we consider a single τ ′p only, we obtain (333)
and (334) without the summation - corresponding to a single step
and a single maximum. In other words, different slopes of the
relaxation modulus along the time axis, signalling different pro-
cesses, translate into corresponding features in the G′ and G′′.

In particular, the two maxima of the loss modulus exhibit
different shifts when different frequencies are compared. Fig. 72
shows this explicitly. The first maximum, i.e. the maximum at or
close to Tg, follows the curve labeled ’β -process’ and the second
maximum, the one occurring at a lower temperature, follows
the curve labeled ’γ-process’. Based on our previous discussion
of time-temperature superposition our expectation would have
been that there is only one curve.

A Remark on notation: It is customary to assign greek letters, α,
β , γ, δ ,... to relaxation processes in their order of appearance

TG1 TG3

heating rate

kG1 < kG3

kG3

kG1

volume

temperature

Fig. 68 Schematic dependence of the specific polymer volume on tem-
perature at different heating rates.

TG1 TG2 TG3

heating rate
kG1<kG2<kG3

kG1 kG2 kG3

heat capacity cP

temperature

Fig. 69 Schematic dependence of the isobaric polymer heat capacity on
temperature at different heating rates.

as temperature decreases. The α process is customary the glass
transition. Here the sequence starts with β , however.

The curve labeled ’β -process’ in Fig. 72 can be described quite
well using Eq. (271), where aT is given by Eq. (270) and the
reference temperature is taken to be Tg for a particular ωg, i.e.

lnω = lnωg + c1
T −Tg

c2 +T −Tg
, (392)

where

c1 = A/v f (Tg) and c2 = v f (Tg)/α . (393)

Note that in the literature Eq. (392) can be found with log instead
of ln. In this case c1 differs from c1 in Eq. (392) by a factor
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f1 < f2 < f3
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Fig. 70 Schematic dependence of the dynamic moduli (solid lines: G′;
dashed lines G′′) on temperature at different frequencies.

loge≈ 0.43.
Before we discuss the application of this fit function to data in

Fig. 72, we want to mention an equivalent (empirical) form of
the Dolittle relation (267) (after it is combined with Eq. (269)),
which is meant to specifically describe the viscosity at or near Tg,
i.e.

η(T ) = Bexp [Ta/(T −TV F )] . (394)

Equation (394) is called the Vogel-Fulcher law and TV F is the
Vogel or Vogel-Fulcher temperature. The temperature Ta is an
activation temperature, whereas B is a constant independent of
temperature. TV F and Ta are connected to c1 and c2 in Eq. (392)
via

TV F = Tg− v f (Tg)/α ≡ Tg− c2 (395)

and

Ta = A/α ≡ c1 c2 . (396)

(check this!). Multiplied with the gas constant R this activation
temperature yields an activation energy Ea = RTa. Why there
should be an activated process involved here becomes plausible
if we look at the curve labeled ’γ-process’ in Fig. 72. This curve,
apparently a straight line, appears to coincides with the curved
line based on (392) if the temperature is sufficiently high.

The fact that the maxima of the ’γ-process’ appear to fall onto
a straight line suggests that this process can be described by an
Arrhenius Equation:

lnk = lnAa−
Ea/R

T
. (397)

Fig. 71 Essentially an extended version of Fig. 70 revealing two different
relaxation processes. The specific polymer here is a solution styrene-
butadiene rubber (SSBR). This is an excerpt from Fig. 2.47 in Wrana’s
book.

Here Aa is a factor and Ea is the activation energy in mole for the
process. The rate constant k gives the frequency of the process. If
we expand Eq. (392) in the limit T � Tg, we find

lnω = lnωg +
A

v f (Tg)
− A/α

T
(398)

to leading order in T−1. Since, as already mentioned, the data
points for both processes seem to come together at high temper-
atures, we may concluded that Ta from Eq. (396) is indeed the
same as Ea/R in Eq. (397). This means that both processes should
be closely related, if not identical, in this temperature limit.

Figure 73 shows the data points labeled β -process in Fig. 72
fitted using Eq. (392). First we select a point along the curve
mapped out by the data in Fig. 72 which defines the reference
ωg = 2π fg and reference Tg in Eq. (392). For this pair (ωg, Tg) we
attempt the best fit through the data points in Fig. 72 by adjust-
ing c1 and c2. Here this is done for three pairs (ωg, Tg) indicated
by the red circles. The resulting values of c1 and c2 are compiled
in Table. 11. What the tables also shows is that no matter which
pair (ωg, Tg) we use in Eq. (392), we always get the same TV F and
Ea. The Vogel-Fulcher temperature TV F is T in the limit ω → 0 in
Eq. (392), i.e. TV F is the limiting Tg for an infinitely slow process
††. The value for Ea is what one expects for interactions between
neighboring polymer chain segments containing only a few car-

†† For those of you who compare and check values: The data in this example are taken
from Fig. 2.47 in Wrana’s book. The polymer is an SSBR. In table 2.2 in the same
reference TV G for SSBR is -60 °C, i.e. 30°C higher in comparison to the value in Table
11. However, TV F depends critically on the styrene to vinyl ratio, which in the case
of TV G =-60 °C is 25% styrene to 50% vinyl. In other words, it appears that the
styrene content in the SSBR in Fig. 2.47 is lower.
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Fig. 72 Frequency vs. inverse temperature for the processes denoted β -
and γ-processes in Fig. 71. This is another excerpt from Fig. 2.47 in
Wrana’s book.

bon atoms. Hence, while Tg depends on frequency or the rate of
the process, it is possible to obtain a meaningful limiting Tg via
TV F . In addition, we obtain Ea, providing additional information
about molecular processes at play. When we talk about polymers
containing fillers, we shall return to Ea and learn that the ob-
served Ea can be due to processes which have nothing to do with
the polymer itself (cf. J. Fritzsche, M. Klüppel Structural dynamics
and interfacial properties of filler-reinforced elastomers. Journal of
Physics: Condensed Matter 23, 035104 (2011).
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Fig. 73 The data points labeled β -process in Fig. 72 fitted with (392)
using three distinct pairs (ωg, Tg) (red circles) along the curve mapped
out by the data points.

Our phenomenological description of the glass process thus far
has heavily relied on free volume as a central ingredient. It turns
out that free volume is also useful when we want to understand
how Tg is affected by molecular weight or molecular architecture

Table 11 Application of Eq. (392).

fg [Hz] Tg [K] c1 c2 [K] TV F = Tg− c2 Ea = Rc1c2
[K] [kJ/mol]

10−9.5 206 47 23 183 9.0
10−3.7 215 34 32 183 9.0

8.4 ·104 262 13.3 79 183 8.7

in general. Here we avoid a general discussion though. Instead
we focus on the molecular weight dependence of Tg for linear
polymers.

We consider a constant volume V containing N polymers con-
taining M monomers each. Equation (269) ties the free volume
v f (T ) in this system at temperature T to the glass transition tem-
perature Tg if it is our Tr. Hence can rewrite Eq. (269) as

v f (T ) = v f (Tg,∞)+δv f (M)+α(T −Tg) . (399)

This means that v f (Tg) is split into the free volume at Tg,∞ when M
is infinite, i.e. there are no free ends inside V , plus a piece δv f (M),
which accounts for the extra free volume due to the presence of
the free ends when M is finite. Setting T = Tg,∞ in (399) yields

Tg = Tg,∞−
δv f (M)

α
. (400)

We also assume δv f (M) ∝ 2N, where 2N is the number of polymer
ends. Since N M/V = ρ, where ρ is the constant number density
of monomers, we obtain

Tg = Tg,∞−
c
M

, (401)

where c is a quantity independent of M. In other words, according
to this line of argument, decreasing M should decrease the glass
transition temperature. This relation between the glass transition
temperature and polymer molecular weight was first discussed
by Fox and Flory in T. G. Fox, P. J. Flory Second-Order Transition
Temperatures and Related Properties of Polystyrene. I. Influence of
Molecular Weight. J. Appl. Phys. 21, 581 (1950) (Fig. 3 in this
paper shows a nice example confirming (401)).

There is another observation to be made. This one concerns
the relaxation modulus G(t) near Tg. The exponential form

G(t)∼ exp[−t/τ] (402)

yields

G′′(ω)∼ ωτ

(ωτ)2 +1
(403)

as we had found during our discussion of the Rouse and the Zimm
model. The solid line in Fig. 74 is a fit based on this form to
data (open circles) obtained for the loss modulus of a sample of
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highly cross-linked polyisoprene. We notice that the experimen-
tal peak, corresponding to what we called the β -process, in this
log-log plot is quite asymmetric, whereas the exponential G(t)
in (402) produces a symmetric peak. Also included in the fig-
ure is a dashed line, which is a much better fit capturing the
aforementioned asymmetry. The dashed line is calculated with
a Kohlrausch-Williams-Watts or stretched exponential form for
the relaxation modulus, i.e.

G(t)∼ exp[−(t/τ)β ] , (404)

where β is an exponent - usually between 0.3 and 0.5 (here
β = 0.5). Since the attendant G′′(ω) can only be presented as an
unwieldy expression involving special functions, we do not give
it here.
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Fig. 74 Experimental loss modulus of highly cross-linked polyisoprene
compared to G′′(ω) (ω = 2π f ) calculated from the exponetial (solid line)
and a stretched exponential form (dashed line) of the relaxation modu-
lus. (data reproduced with the permission of Continental Reifen Deutsch-
land).

Remark: If G(t) has a power-law form, i.e.

G(t)∼ t−β , (405)

then

G′(ω),G′′(ω)∼ ω
β , (406)

respectively.

Nevertheless, despite all of this, the inescapable conclusion
thus far is the following: Close to Tg and below we find relax-
ation processes of different nature for which, at this point, we
have no microscopic theory in accord with even most of the afore-
mentioned observations. Since free volume has been a key ingre-
dient to our discussion of the observations in conjunction with
the glass process (remember in particular our prediction of how
Tg depends on molecular weight), one might try to base a theory
of the glass transition on free volume (the free volume based de-
scription of dense gases and liquids dates back to the 1930s (see J.

O. Hirschfelder, C. F. Curtiss, R. B. Bird Molecular Theory of Gases
and Liquids. John Wiley & Sons:New York (1954))). However,
there are many theoretical models, including free volume theo-
ries, attempting to describe the glass transition and here we can-
not do justice to even the more important ones. Instead we want
to discuss the so called mode coupling theory theory (MCT) -
albeit in a very much abbreviated and idealized form.

MCT is not a polymer theory per se. Much rather it is a theory
for the glass process in general, i.e. the reversible process during
which liquid-like amorphous order is replaced by solid-like amor-
phous order and vice-versa, which occurs in low molecular weight
systems as well. Neither does MCT describes all our observations.
But MCT features a number of interesting and thought-provoking
ingredients and results, which a student of polymer physics might
want to now about. Most of the following is borrowed from an
article by L. M. C. Janssen (Mode-Coupling Theory of the Glass
Transition: A Primer, Frontiers in Physics (2018)). A discussion of
the glas transition in polymer systems, including a number of the-
oretical approaches, can be found for instance in I. M. Kalogeras
Glass-Transition Phenomena in Polymer Blends. Encyclopedia of
Polymer Blends: Volume 3: Structure, First Edition. Edited by
Avraam I. Isayev, Wiley-VCH Verlag (2016).

Standard MCT seeks to predict the dynamics of the function
F(q, t), a time-dependent structure factor, given by

F(q, t) =
1
N
〈ρ̂(−~q,0)ρ̂(~q, t)〉 (407)

where

ρ̂(~q, t) =
∫

d3r ei~q·~r
ρ(~r, t) (408)

and

ρ(~r, t) =
N

∑
i=1

δ (~r−~ri(t)) . (409)

Note that ρ(~r, t) is the same as in Eq. (111), except that this is
not specifically a monomer number density but a general particle
density. Hence F(q, t) is very much like Pi(θ), except that now the
time dependence is included.

We shall not derive the equation governing the dynamic evolu-
tion of F(q, t). This calculation can be found in the references in
the aforementioned article by Janssen. Instead we want to study
this equation in an idealized approximation, i.e.

ẍ(t)+ω
2x(t)+a

∫ t

0
x2(t− t ′)ẋ(t ′)dt ′ = 0 . (410)

Here x(t) stands for F(q, t)/F(q,0) and in particular x(t = 0) = 1.
In Eq. (410) the q-dependence is ignored and, in addition, ω (>
0) and a (> 0) are functions which here are treated as constants.
Despite this, Eq. (410) captures most of the essence of the full
MCT equation for F(q, t).

Note that Eq. (410) becomes the equation of motion of a one-
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dimensional damped harmonic oscillator if we replace x2(t − t ′)
with δ (t− t ′), i.e. ẍ(t)+ω2x(t)+aẋ(t) = 0. We can solve Eq. (410)
numerically using a Verlet algorithm. First we expand x(t), i.e.

x(t±δ t) = x(t)± ẋ(t)δ t +
1
2

ẍ(t)δ t2 + . . . . (411)

Subsequently we add the two equations (±!) and insert ẍ(t) from
Eq. (410), i.e.

xn+1 ≈ 2xn− xn−1−
[
ω

2xn +a
n−1

∑
i=0

xn−i
2(xi+1− xi

)]
δ t2 . (412)

Note x(t = nδ t) ≡ xn. In addition we approximate the integral
by a summation. Our starting x-values are x0 = 1 and x1 ≈
1− (ω2/2)δ t + (aω2/6)δ t3. The latter we obtain by inserting a
power series expansion of x(t) into the above damped harmonic
oscillator-approximation of (410). Straightforward iteration of
(412) yields the graphs depicted in Fig. 75. Compared to the
simple damped harmonic oscillator the solutions of the idealized
MCT, i.e. Eq. (410), exhibit an increasing slowdown of the decay
of x(t) as a is increased. The slowdown of the decay of x(t) is the
result of the non-linearity of Eq. (410). Careful analysis reveals
that the slowdown becomes infinite for a ≥ 4. With regard to
F(q, t) this means that the system becomes non-ergodic for a≥ 4.

0.10 1 10 100 1000 104
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0.6

0.8
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x(t)

Fig. 75 Numerical solutions of Eq. (410) for ω2 = 1 and for a = 3.9
(blue) in comparison to a = 4.0 (golden). The dotted curves are the
corresponding solutions of the damped harmonic oscillator, i.e. ẍ(t)+
ω2x(t)+aẋ(t) = 0.

In order to better understand what is going on, we digress from
the glass process and briefly turn to chemical reactions - or more
precisely to rate equations. Eq. (413) describes how the mole
fraction of the chemical component X changes with time during
a reaction. Specifically this is a non-linear autocatalytic reaction
due to the term proportional to nX

2 on the right side of the equa-
tion. nY (0) is the mole fraction of chemical Y, which is constant
and the various ks are rate constants. Eq. (413) is one equation
within a larger reaction schema discussed in section 7.3.1 of R.
Hentschke Thermodynamics (Springer:Heidelberg (2022)).

d
dt

nX = (k1nY (0)− k3)nX − k−1nX
2 (413)

Integration of this equation yields the solution

nX (t) =
(k1nY (0)− k3)nX (0)

k−1nX (0)− [k−1nX (0)− k1nY (0)+ k3]exp[(−k1nY (0)+ k3)t]

Depending on whether nY (0) < nY,crit or nY (0) > nY,crit , where
nY,crit = k3/k1, there are two steady state solutions nX (∞) = 0
or nX (∞) = (k1nY (0)− k3)/k−1 if nX (0) > 0. The system’s choice
which of the two solutions it prefers, i.e. the stable solution, de-
pends on the parameter nY (0)/nY,crit . Fig. 76 illustrates this show-
ing the stable solutions for nY (0) slightly below in comparison to
nY (0) slightly above nY,crit . Autocatalytic reactions are interesting
because of the possible bifurcation of the long time concentra-
tion of chemical components, depending on the value of a control
parameter. This mechanism is believed to be important during
chemical evolution, i.e. without violation of the second law na-
ture can produced increasingly complex systems .
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Fig. 76 Stable solutions of Eq. (413) for nY (0) slightly below nY,crit in
comparison to nY (0) slightly above nY,crit . Here nY,crit = 0.5. nY (0) = 0.49
(lower curve) and nY (0) = 0.51 (upper curve); k−1 = 0.5, nX (0) = 0.1,
k3 = 1, and k1 = 2.

Comparing (410) with (413) we note that a/ac (ac = 4) in the
former equation is akin to nY (0)/nY,crit in the latter equation. The
difference, however, is that x(t) exhibits a delayed decay. This has
to do with the memory kernel in the integral, which links t to all
previous times.

Figure 77 is a schematic summary of the full MCT result (note
that S(q) = F(q,0)) obtained for particle systems. The central el-
ement is a cage around each particle. For very short times the
particle moves more or less without noticing the other particles
forming the cage. This is the ballistic regime. In our idealized
MCT this time regime is dominated by the harmonic potential. In
an intermediate time regime (here the β -relaxation), which grows
as T approaches Tc (in the idealized MCT this means a approaches
ac = 4; in the full MCT the factor corresponding to a is a func-
tion linearly dependent on temperature.), the cage restrains the
particle’s motion. Both limits of this regime are characterized by
power law behavior. Finally, when T < Tc, the particle escapes the
cage (here α-relaxation). This ultimate decay of F(q, t)/F(q,0),
characterized by the relaxation time τ, follows a stretched expo-
nential.

But how does this relate to our observations during the glass
process? Within MCT Tc is the glass transition temperature and
one finds that τ ∼ (T −Tc)

−γ (γ > 0). With τ ∝ η , this power law
of course is different from the exponential forms of the Vogel-
Fulcher law (394) or the Dolittle relation (267) in conjunction
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Fig. 77 Schematic summary of the full MCT result . This is Fig. 7 from
L. M. C. Janssen (Mode-Coupling Theory of the Glass Transition: A Primer,
Frontiers in Physics (2018)).

with the linear temperature dependence of the free volume (269).
On the other hand, MCT predicts that F(q, t) = F̃(q, t/τ(T )),
where F̃(q, t/τ(T )) is a master function. This corresponds to time-
temperature superposition! And of course there is the streched
exponential decay, during the α-relaxation in MCT. There are a
number of other predictions of MCT which have been confirmed,
but since these do not pertain to our above observation we shall
not discuss them here.

6 Selected Topics
The following collection of ’selected topics’ offers a mere glims
of what the respective heading announces. This is because each
topic by itself may fill an entire book or even several books. In
turn this means that what you find under each heading is biased
by this author’s personal experience with the subject and there-
fore may neglect material considered essential by others. For this I
apologize. However, I have included references which most likely
cover the omitted material.

6.1 Aspects of the Mechanics of Polymers
• Basic Stress-Strain Curves

The measurement of (tensile) stress-strain curves ranks among
the most common mechanical tests on polymer samples. How-
ever, note that there are different types of stress. True stress,
for instance, is the applied load divided by the actual sample
cross-sectional area. Engineering stress or nominal stress, on
the other hand, is the applied load divided by the original cross-
sectional area of the sample.

Figure 78 shows schematic stress-strain curves for different
types of polymers. Polymer single crystal fibers show the steepest
increase of stress with increasing strain. This is because the co-
valent bonds of the polymer backbone usually are highly aligned
with the drawing direction. How this is done we shall briefly dis-
cuss in the section on liquid crystalline polymers. Since covalent
bonds are very strong, the stress at break of these polymers is
quite high (in the GPa range). On the other hand, the strain at
break is only a few %.

Figure 79 shows an example of the fracture strength of poly-
mer single crystal fibers as a function of their diameter. The solid
line fitting the data quite well is simply based on σT ∝ D−1, where

σT is the tensile strength and D is the fiber diameter. This pro-
portionality is motivated by the idea that the initial ’damage’ or
cause leading to the failure of the fiber originates at its surface.
The observation that ’thinner is stronger’ actually is quite general
in the context of technical as well as natural polymer fibers. An-
other quantity important for the tensile strength of fibers is the
molecular weight of the polymers. Higher molecular weight gen-
erally means higher tensile strength (P. J. Flory Tensile Strength in
Relation to Molecular Weight of High Polymers J. Am. Chem. Soc.
67, 2048 (1945)).

Fig. 78 Schematic stress-strain curves of the indicated polymer types.
Crosses indicate the end of the respective curve due to sample failure.
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Fig. 79 Tensile strength of polydiacetylene single crystal fibres as func-
tion of their diameter. The data points are from Fig. 5.64 in R. J. Young,
P. A. Lovell Introduction to Polymers (1991). The solid line is a fit using
σT ∝ (diameter)−1.

The interesting shape of the stress-strain curve of semi-
crystalline polymers is due to the complex structure consisting
of amorphous and crystalline regions. On the molecular level the
crystalline regions restructure by various mechanisms (slip, twin-
ning, ...) in the different strain regions. The stress-strain curve
of elastomers is discussed in various places and in some detail in
these notes.

Sample failure, indicated by the crosses, is a difficult topic.
This is because failure and where is happens along the stress-
strain curve, is influenced by diverse structural and dynamic
effect. We do not want to discuss this topic and refer the reader
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to the literature dedicated to it (e.g. H.H. Kausch Polymer
Fracture Springer:Heidelberg (2012); A. J. Kinloch, R. J. Young
Fracture Behaviour of Polymers Springer Science+Business Media:
Dordrecht (1995))

• Mooney-Rivlin Theory

In section 4.5 we derived the elastic free energy contribution
due to the macroscopic deformation of a polymer bulk sample
expressed in terms of the quantities λx, λy, and λz. Each of these
quantities is a factor by which the attendant edge of a rectangular
volume is compressed or stretched during a deformation of the
original rectangular volume.

Mooney and Rivlin had the idea to derive a free energy of de-
formation expressed in terms and valid for arbitrary λα based
on symmetry arguments (M. Mooney The Thermodynamics of a
Strained Elastomer. I. General Analysis. J. Appl. Phys. 19, 434
(1948); R. S. Rivlin Large Elastic Deformations of Isotropic Materi-
als. IV. Further Developments of the General Theory. Philosophical
Transactions of the Royal Society of London. Series A, Mathemat-
ical and Physical Sciences 241, 379 (1948)). The upshot is that
the following expressions, quadratic in the λ s and valid for any
type of deformation, do not change if we exchange our coordinate
system with another:

I1 ≡ λx
2 +λy

2 +λz
2 (414)

I2 ≡ λx
2
λy

2 +λy
2
λz

2 +λy
2
λz

2 (415)

I3 ≡ λx
2
λy

2
λz

2 (416)

These invariants appear most clearly in Rivlins article (cf. his
equation 3.4). Essentially he uses the fact that the strain tensor
can be diagonalized at every point in the elastic body. The λα are
the stretch factors associated with the orthogonal axes (principal
axes of strain) in the coordinate system in which the strain tensor
is diagonal (Remark 1: The λα are the same as the factors (1+
u(1)) in Eq. (205); Remark 2: In the case of uniform stretch of a
square column the principal axes and the identification of the λ s
is rather obvious. In the case of shear this is much less so!). Note
that I1 as well as (in principle) I3 appear in the elastic entropy
(190). I2 is new and if we include it we may construct an elastic
free energy of the following form:

∆Fel =C1(I1−3)+C2(I2−3)+C3(I3−3) . (417)

Here C1, C2, and C3 are as yet unknown constants. Note also that
∆Fel = 0 if there is no deformation.

In the case of uniaxial stretch at constant volume, i.e. I3 = 0,
(cf. Eqs. (195) and (218)) ∆Fel becomes

∆Fel =C1

(
λ

2 +
2
λ
−3
)
+C2

(
2λ +

1
λ 2 −3

)
. (418)

Hence, using the same notation as in Eq. (218)),

σzz =
1
V

∂∆Fel

∂λ
= 2

(
C1 +

C2

λ

)(
λ − 1

λ 2

)
. (419)

It is customary to define a reduced stress via

σzz,red ≡
σzz

λ − 1
λ 2

= 2
(

C1 +
C2

λ

)
. (420)

Figure 80 shows stress-strain measurements in standard form
(a) and as Mooney-Rivlin plot (b) compared to Eq. (419) (a)
and Eq. (420) (b), respectively. The Mooney-Rivlin plot exhibits a
nice straight portion over a significant range of values 1/λ , which
can be fitted with (420). The coefficient 2C1, which is the in-
tercept with the reduced stress axis, is equated with NkBT and
therefore yields the cross-link density. Here N is the number of
chain segments joining (on average) two successive cross-links
along a polymer chain. The number of cross-links is N/2 (think
about a justification for this!).

Fig. 80 Stress-strain measurements in standard form (a) and as Mooney-
Rivlin plot (b). The material is a rubber (HNBR with 34% ACN) with
variable concentration of a chemical cross-linking agent. The lines are
fits using to Eq. (419) (a) and Eq. (420) (b), respectively. This figure
is Fig. 3.11 from Wrana’s book.

The reasoning why 2C1 should be equal to NkBT is based
on the comparison between our previous expression for the
elastic entropy (192) and (418). Since (192) contains the factor
λ 2 + 2/λ − 3 we take its coefficient (multiplied with −T ) and
equate it with the coefficient of the same λ -term in (418). This
is hardly a ’clean’ procedure however. For instance, note that the
two expressions for the elastic free energy are different in the
limit λ → 1 (unless we ignore C2 again) and neither expression
is valid when λ becomes large. In other words, there is no easily
identifiable limit in which 2C1 = NkBT holds. Nevertheless, this
is a commonly applied procedure.

Remark: The apparent deviation between the data and Eq. (420)
in the limit λ → 1 can be fixed by addition of an adjustable ’offset’
σzz,o to the right hand side of Eq. (419) (check this!).

• Mullins Effect
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If a ’sufficiently elastic’ polymer material is subjected to consec-
utive loadings, the stress, measured for a strain that was already
reached in a previous loading, is found to be reduced. The car-
toon in Fig. 81 illustrates this. The sample is strained and the
stress follows path 1. Upon reaching the end of path 1, i.e. the
largest strain during the initial loading, the sample is relaxed.
During a second loading the stress does not increase along path
1, as before, but follows path 2 and then continues along path
3. When the end of path 3 is reached, the sample again is re-
laxed. During the third loading the stress increases along path 4
and then continues along path 5, etc. The curve corresponding
to the combined paths 1, 3, 5, .. is sometimes called the virgin
curve. It is important to note that the strains used here are quite
large (cf. the next figure). It is also important to note that this ef-
fect, called the Mullins softening effect, is most apparent in well
vulcanized and/or filled samples (we discuss fillers in the next
section). The next figure, Fig. 82, shows the result of an actual
experiment. Here the sample experiences repeated stretching at
constant strain amplitude before the latter is increased. Note that
most of the softening is observed during the first deformation cy-
cle. After a few additional cycles the rubber approaches a steady
state or limiting cycle whose hystersis is much reduced.

Fig. 81 Schematic illustration of the Mullins effect.

We do not want to discuss the Mullins effect in detail - except for a
few comments: (i) the Mullins effect should not be confused with
the so-called Payne effect occurring at much lower strain (cf.
the next section); (ii) the generally accepted explanation for the
Mullins effect is that high strain causes ’partially irreversible’ (i.e.
structural effects with very long relaxation times) movements of
entanglements, network junctions or slippage of chain segments
attached on filler particle surfaces as well as restructuring of filler
particle networks and chain rupture; (iii) for more information
the interested reader is referred to the aforementioned PhD
Thesis by Plagge and to T. A. Vilgis, G. Heinrich, M. Klüppel
Reinforcement of Polymer Nano-Composites. Cambridge University
Press: Cambridge (2009). I also recommend the much older
but very insightful article Network Theories of Reinforcement. by
F. Bueche in Reinforcement of Elastomers. (G. Kraus, Editor) J.
Wiley & Sons: New York (1965).

Remark: You may wonder why the stress-strain curves depicted

Fig. 82 (a) Example of a material experiencing Mullins effect: 40 phr car-
bon black (N339) filled, sulfur cured EPDM. Continuous stretching (vir-
gin curve) and multihysteresis experiment, consisting of repeated loading
of increasing strain levels. (b) Corresponding strain protocol. Copy of
Fig. 1.4 from J. Plagge On the Reinforcement of Rubber by Fillers and
Strain-Induced Crystallization. PhD Thesis, Universität Hannover (2018).

in Fig. 52 look so different from the ones depicted in Fig. 82.
Figure 52 corresponds to an ideal linear model subject to a sinu-
soidal excitation. Figure 82 corresponds to a real material which
is non-linear and the excitation has a saw-tooth shape rather
than being sinusoidal. In addition, the hysteresis observed in
stress-strain experiments has numerous contributions beyond the
viscoelasticity of the neat polymer matrix. The material in Fig.
82 contains filler. We have already learned that filler networks
can break and restructure when a load is applied. Moreover, load
(and rate) dependent processes at the filler-polymer interface,
e.g. chain slippage, contribute to hysteresis. When strain
crystallization occurrs, as we explain next, it also contributes to
the observed hysteresis.

• Strain-Induced Crystallization

Strain-induced crystallization (SIC) is a process during which
crystallites form within an originally amorphous polymer matrix
in response to (usually large) strain (cf. the cartoon in Fig. 83).
SIC occurs in natural rubber (NR), as well as other elastomers
and polymers - even though much of the interest in SIC is due to
the importance of NR in technical applications (perhaps foremost
among these are tires in particular for trucks).

Figure 84 shows stress-strain curves of NR together with the
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observed crystallinity during loading and unloading. To the su-
perficial observer the curve in panel (a) looks somewhat similar
to the stress-strain curves we have already discussed in the con-
text of the Mullins effect. However, the curve depicted in Fig. 84
was obtained after a certain number of previous cycles and the
central portion of in particular the unloading part of the cycle is
quite flat. It looks very much like a phase transformation from
one phase to another (e.g., gas-liquid or liquid-solid coexistence
in the P-V plane). X-ray scattering in fact reveals the presence of
crystallites (their size is roughly 10 nm) formed beyond a certain
strain threshold. Comparing panels (a) and (b) it appears that
the stress is lower if the crystallinity is higher at any fixed strain.

Is there a theoretical argument why this should be the case?
Yes - and, as one might expect, it was suggested by P. Flory (Ther-
modynamics of Crystallization in High Polymers. I. Crystallization
Induced by Stretching J. Chem. Phys. 15, 397 (1947).).

Fig. 83 Cartoon of a crystallite within an amorphous network. From L.
Tarrach, PhD thesis, University of Wuppertal (2024).
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Fig. 84 (a) Stress-strain (λ) curves of natural rubber. The curves
were obtained after the fourth mechanical cycle at a strain rate of 1
mm/min. (b) Crystallinity measured during the cycle in panel (a) at
room temperature. Arrows distinguish the loading from the unloading
part of the strain cycle. The data are taken from Fig. 2 in S. Trabelsi,
P.-A. Albouy, J. Rault, Macromolecules 36, 7624 (2003).

However, before going into the details, it is useful to discuss the
example in Fig. 85. The cartoon shows two ideal polymer chains
containing an identical number of Kuhn segments n attached to
opposite walls. The length of the Kuhn segments is b and the
separation of the walls is R. It is assumed that nb � R. The
entropic force on the anchoring points of the chain on the left is

R n n-nc

nc

Fig. 85 Illustration of chain conformations without (blue) and with
(green) strain crystallization (red).

f =−T
dS(R)

dR
∝

R
n
, (421)

where S(R) is given in Eq. (82). The chain on the right, even
though it possess the same number of Kuhn segments, differs
from the first. It contains nc consecuetive Kuhn segments which
are fully aligned and perpendicular to the walls. The rest of the
chain, however, is a regular (amorphous) chain of the remain-
ing n− nc Kuhn segments. At this point we are not interested in
what causes the first nc Kuhn segments to be special. Instead we
want to know how these nc Kuhn segments affect the force on the
anchoring points of the chain.

Due to the constraint, the force fc on the ends of the right chain
is

fc ∝
R−ncb
n−nc

. (422)

Since the proportionality constants in (421) and (422) are the
same, we must compare R/n to (R−ncb)/(n−nc) to decide which
force is larger. For simplicity we assume b = 1 and use the numer-
ical example R = 10, n = 100 and nc = 4. This yields

R
n
= 0.1 and

R−ncb
n−nc

≈ 0.06 , (423)

Hence | fc| < | f |. Now let’s increase R from 10 to 12. If we want
fc to be constant, what does this imply for nc? In order for fc to
remain constant, we must increase nc from 4 to approximately 6.
And this is essentially what we see in Fig. 84.

In other words, the formation of the crystallites, containing
aligned polymer segments oriented predominantly in the direc-
tion of the applied strain/stress, ’buys’ the remaining amorphous
Kuhn segments conformational freedom, which they otherwise
would not possess. This in turn reduces the force on the anchor-
ing points of the chains in their network. SIC therefore is a means
by which an elastomer material can reduce the stress acting on it.
The crystallites can ’pop up’ (on a time scale of ms) where needed
and thus create a flexible response to large local strain. When the
strain is reduced the crystallites melt. SIC therefore has important
effects on strength and fatigue properties of the strain crystalliz-
ing material.

However, let’s return to the aforementioned work of Flory. His
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is a single-chain theory described by a two-term free energy

∆F/T =−∆Sel +n(1− x)θ . (424)

The first term is an elastic entropy given by

∆Sel/kB =−1
2

{(
λ

2 +
2
λ

)
1
x
−3−2λ

1− x
x

√
3n p+

(1− x)2

x
3n
}

.

(425)

Here the quantity x is defined via nc = n(1− x). nc is the number
of straightened Kuhn segments in a chain composed of n Kuhn
segments (cf. the above example). Note that for nc = 0, i.e. x = 1,
∆Sel agrees with ∆Sel

stretch/N in Eq. (195). In Flory’s paper p =√
2/π. however, here we use a slightly adjusted value in order to

achive nc = 0 for λ = 1 (see below).
But what is the meaning of the second term - in particular the

quantity θ? It is due to straightening of nc = n(1− x) consecutive
Kuhn segments within a chain. If we force a ’crystallite’ to exist
above the melting temperature we must pay a positive ’penalty’ in
the form of work, i.e. by deforming the sample. The equilibrium
x-value, i.e. xo, follows via ∂∆F/∂x|λ = 0:

x2
o =

(
λ 2

2 + 1
λ

)
1
n +

3
2 −λ

√
3
n p

3
2 −θ

. (426)

If we require that nc = 0, i.e. xo = 1, for λ = 1 then

√
3
n

p = θ +
3

2n
. (427)

Finally, we find the average force f on a chain’s ends via

f/T =−d∆F/T
dλ

=−∂∆F/T
∂λ

∣∣∣
x
− ∂∆F/T

∂x

∣∣∣
λ︸ ︷︷ ︸

=0

dx
dλ

(428)

=

(
λ − 1

λ 2

)
1
xo
−
√

3n p
(

1− xo

xo

)
.

Figure 86 shows an example where n = 36 and θ = 0.19. Thus,
from Eq. (427) it follows that p ≈ 0.803 (very close to the afore-
mentioned Flory value of 0.798). Like in the previous example,
we find that the force at constant strain in a chain with SIC is less
than that in a chain without SIC.

However, Fig. 86 is far from being a complete theory for ex-
periments like the one illustrated in Fig. 84. Aside from the fact
that the force curve in Fig. 86 does not show the pronounced
upturn at high λ due to the absence of finite chain extensibility,
there are other significant shortcomings. First, there is only a sin-
gle curve and no hysteresis. This is because this is an equilibrium
single-chain theory. Second, crystallization in this theory begins
immediately. The experiments, on the other hand, find rather dis-
tinct and quite elevated strain values upon loading and unloading
where crystallites are formed or disappear. This is because the
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Fig. 86 (a) Crystallization 1−xo, vs. strain, λ . (b) Force, f , divided by
temperature T , on a segment vs. λ . Solid line: Eq. (428); dashed line:
λ −1/λ 2. Parameter values: n = 36, θ = 0.19 and p according to (427).
This is figure 3 in R. Hentschke, J. Plagge Strain-induced self-assembly of
crystallites in elastomers. Phys. Rev. E 104, 014502 (2021).

time-dependent formation and cooperative behavior of crystal-
lites is not addressed in Flory’s theory. A suggestion for the rather
distinct onset of crystallite formation is made in R. Hentschke,
J. Plagge Strain-induced self-assembly of crystallites in elastomers.
Phys. Rev. E 104, 014502 (2021). The authors propose that
1− xo, shown in Fig. 86 (a), is the sum of two contributions, i.e.
1− xo = x1 + xagg. Here xagg is due to the crystallites observed
via scattering experiments. x1, on the other hand, corresponds
to straightened chain segments in a largely amorphous environ-
ment, which are not yet part of a crystallite. Both x1 and xagg

are described analogous to free and bound monomers in the con-
text of reversibly assembly of labile polymeric aggregates - which
in these lecture notes are discussed in section 6.3. The theory
of reversible assembly of molecular aggregates implies a critical
concentration required for aggregates, or crystallites in the case
at hand, to form. And this threshold concentration might just
explain why there is such a distinct onset of strain induced crys-
tallisation.

Subsequent to Flory’s seminal work, numerous other re-
searchers have made contributions to SIC. However, this is not
the place for a comprehensive overview. Instead the interested
reader may want to consult the following references as well as the
references therein: J. Plagge and M. Klüppel A Theory Relating
Crystal Size, Mechanical Response, and Degree of Crystallization in
Strained Natural Rubber. Macromolecules 51, 3711 (2018); P.-A.
Albouy and P. Sotta Draw Ratio at the Onset of Strain-Induced
Crystallization in Cross-Linked Natural Rubber. Macromolecules
53, 992 (2020); J. Plagge, R. Hentschke Microphase Separation
in Strain-Crystallizing Rubber. Macromolecules 54, 5629 (2021).

• Loss Tangent
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We had introduced the loss tangent or tanδ in the context of Eq.
(258), where it is defined as the ratio of the loss modulus to the
storage modulus. Aside from the dynamic moduli themselves, the
loss tangent is one of the quantities most likely measured during
mechanical testing of a polymer sample. Since it is an important
laboratory indicator for rubber performance in the tire industry,
we want to briefly discuss it here. The importance of tanδ as a
tire rubber performance indicator is illustrated in Fig. 87.

The figure shows two experimental loss tangent curves plotted
versus temperature. For the designer of tire tread materials the
comparison between two such curves provides information about
the relative performance of the materials in terms of rolling re-
sistance, i.e. fuel efficiency, and/or breaking under wet and/or
icy conditions. Just like the storage modulus and the loss modu-
lus individually, the loss tangent is affected by almost all changes
made to a rubber’s recipe and processing. Being the ratio of two
moduli, tanδ is a dimensionless quantity. When filler, which we
discuss in the next section, is added, the peak (usually) does not
shift but the height of the peak is reduced (e.g. Figs. 2.63 and
2.64 in C. Wrana’s Introduction to Polymer Physics). More or less
the same happens when the filler amount does not change but the
filler particle size is reduced (e.g. C. G. Robertson et al. Macro-
molecules 41, 2727 (2008)).

Fig. 87 Loss tangent versus temperature for SBR filled with carbon black
and silica nanoparticles. The strain amplitude is 10% and the frequency
is 10 Hz. The figure is taken from a talk given by G. Heinrich.

Figure 88 shows a picture of two rubber balls. If you hold them
in your hands, you cannot really distinguish one from the other.
Their weight and hardness appears to be the same. But dropping
them onto a hard surface reveals a pronounced difference. One
of the balls bounces, whereas the other one just hits the surface
and does not bounce back into the air. I have been told, that
candidates for a position in a well known tire company are
regularly asked to explain this table top experiment during their
job interviews. What is your explanation based on what you have
learned in these notes thus far?

Fig. 88 A bouncy and a not so bouncy rubber ball.

6.2 Filler Effects

Modern polymer based materials contain numerous components
which are not polymers. Prominent among these components are
particulate fillers. In the following discussion of why fillers are
added and how they affect the behavior of the polymer matrix,
we shall concentrate on elastomer materials used in the tire in-
dustry (M.-J. Wang, M. Morris Rubber Reinforcement with Partic-
ulate Fillers. Hanser:Munich (2021)). However, much of what is
said applies to other polymer materials as well.

Figure 89 depicts a typical filler used in tire rubbers - carbon
black. The upmost panel in the figure shows transmission elec-
tron micrographs or TEM images. Each TEM is based on a thin
slice -usually 60 to 100 nm thick on average - cut from a material
sample. What we see are aggregates of carbon black nanoparti-
cles embedded in a polymer matrix. The aggregates vary in dark-
ness because in certain places there are particles stacked along the
line of sight. But what is a particle? Usually the smallest distin-
guishable ’spheres’ are the so-called primary particles. However,
primary particles do not occur isolated from one another. Instead
they are fused into small aggregates - let’s call the minimum ag-
gregates. These minimum aggregates usually do not break during
the mixing process when the filler is introduced into the polymer
matrix. The size of the minimum aggregates and the size of the
primary particles appear to be correlated, i.e. their linear dimen-
sions differ by roughly a factor of three (W. M. Hess, G. C. McDon-
ald Improved particle size measurements on pigments for rubber.
Rubber Chem. Technol. 56, 892 (1983)). Driven by the interface
free energy, fillers show the tendency to form larger aggregates
over time in a process called flocculation. Attractive dispersion
forces between the filler particles let them form larger aggregates
and structures beyond. The larger size and the weaker bonding
means that the aggregates formed during flocculation can be bro-
ken when the material is mechanically deformed.

Filler come in certain grades. In the case of carbon black differ-
ent grades are distinguished by a code starting with the letters N
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or S followed by a number (see American Society for Testing and
Materials ASTM D1765-21). The letters give indication of the
influence of the carbon black on the rate of cure (vulcanization
speed) of a typical rubber compound . The first digit is indicative
of the (primary) particle size (or actually its surface area). Fol-
lowing digits contain additional information regarding the parti-
cle morphology. When the concentration of filler is increased it
will form a spanning network in the polymer matrix as shown in
the middle panel of Fig. 89. Note that the polymer matrix itself
usually is not conductive but carbon black is. The measurement of
the filled polymer’s resistivity versus carbon black concentration
reveals a distinct step or filler percolation threshold. An exam-
ple measurement is shown in the bottom panel of Fig. 89. The
unit of concentration here is phr (parts per hundred) (in weight)
rubber. The filler concentration in commercial elastomer materi-
als varies but usually exceeds the percolation threshold.

Fig. 89 Top: Transmission electron micrographs (TEM) of three differ-
ent grades of carbon blacks - N220, N330, and N550. (bar length: 100
nm). This is Fig. 17 from M. Klüppel The Role of Disorder in Filler Rein-
forcement of Elastomers on Various Length Scales Adv. Polym. Sci. 164,
1 (2003). Middle: TEM-micrograph of a carbon black (N330) network
obtained from an ultra-thin cut of a filled rubber sample. This is Fig.
25 in the aforementioned reference. Bottom: The volume resistivity of
carbon black filled solution SBR including TEM images of carbon black
in-rubber network at 10, 30 and 50 phr loading. This figure is Fig. 7
from L Nikiel, W. Wampler, J. Neilsen, N. Hershberger How carbon black
affects electrical properties. Rubber & Plastics News, March 23 (2009).

In the following we shall use the volume fraction φ to measure
the fractional amount of volume occupied by filler. Hence, we
shall need to convert between phr and φ . As we have already
stated, phr is the abbreviation of part per one hundred base poly-
mer, i.e. the unit phr means proportion by weight, with respect
to 100 parts of the crude rubber used. Carbon black has a density
of around 1.8 to 2.1 g cm−3 and silica, another prominent filler
(cf. below), has a density of around 2.2 to 2.3 g cm−3, whereas
rubber densities are close to 1 g cm−3. The conversion from phr
to filler volume fraction, φ , is

φ =

phr
c f iller

phr
c f iller

+ 100
crubber

(429)

(neglecting additional components). Here c f iller and crubber de-
note the filler and the rubber density, respectively. The formula is
shown in Fig. 90 for c f iller = 2.7 g cm−3 (dotted line), c f iller = 2.3
g cm−3 (solid line), and c f iller = 1.8 g cm−3 (dashed line) using
crubber = 1 g cm−3.

Carbon black nanoparticles are not the only filler used. The sec-
ond prominent filler system is the silica-silane system. Silica parti-
cles consist of amorphous SiO2. The surface of silica nanoparticles
is covered with silanol groups, i.e. various types of OH-groups. In
order to improve the dispersion of silica in most polymers, the
surface of the silica particles is compatibilized using silanes. The
silane molecules are chemically bonded to the silica surface and
usually also to the polymer matrix. Hence the silica-silane system
is quite versatile and can be modified to optimize material per-
formance. Aside from carbon black and silica there are numerous
other fillers including nanotubes, organic particles, etc..
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Fig. 90 Filler content: conversion between phr and volume fraction
φ . Dashed line: carbon black; solid line: silica; dotted line aluminum
(cAl = 2.7 g cm−3).

Figure 91 compiles the effect of variable filler concentration on
a number of mechanical quantities. It is the goal of the theory of
course to provide explanations for these observations.

Suppose we use the rheometer depicted in Fig. 51 to carry out a
shear experiment on one of the polymers whose storage modulus
master curve is depicted in Figs. 54 and 55. Let’s assume the
shear frequency is 1 Hz, which means we are on the plateau in
Fig. 54 (b) or, if the molecular weight is sufficiently large, in Fig.
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Fig. 91 Overview how filler affects mechanical properties of elastomers.
Taken from M. Warskulat, A. Wehmeier Verstärkung · Reinforcement,
Carbon Black & Silica/Silane, Educational symposium presentation at
DKT/IRC 2021, Nürnberg, Germany (2022).

55 as well. In the following Go is this plateau value of the storage
modulus. If the polymer matrix also contains filler Go is replaced
by G.

What happens if we keep the shear frequency constant at 1
Hz but change the shear amplitude? The qualitative answer is
depicted in the top panel of Fig. 92. Without filler essentially
nothing happens. In the case of a linearly elastic network the
storage modulus does not depend on the amplitude of deforma-
tion. However, with the addition of filler this changes. An in-
crease of the storage modulus is observed, which has several con-
tributions. First there is a hydrodynamic effect. Then there is
a in-rubber-structure effect. These two effects depend weakly
on the deformation amplitude. However, the third contribution,
denoted here as ’filler-filler interaction’, strongly depends on de-
formation amplitude. In the limit of small deformations and for
filler concentrations near or above the percolation threshold it is
by far the largest of all four of the shown contributions.

The reason behind the strongly non-linear behavior of the stor-
age modulus is explained in the bottom panel of Fig. 92. The
explanation starts with the spanning filler network still intact at
small strain (roughly < 1% strain). Somewhere between 1% and
10% strain the network is broken up into smaller pieces. But why
should the network begin to break up already at 1% strain - and
sometimes even at strains as low as 0.1%?

Before we address the question directly, let’s construct a (lo-
cal) theoretical picture of the filler network. The left panel in
Fig. 93 depicts filler aggregates (shown as disks) forming net-
work braches. The branches are embedded in tightly bound poly-
mer sheaths. Filler branches plus their polymer sheaths together
constitute filler network strands. The polymer beyond is bulk-
like. A central element is the contact, depicted in the middle,
consisting of adjacent filler particles plus surrounding amorphous
’sheath polymer’. When the contact is stretched, voids between
the aggregates will occur at some point.

Note that the close proximity of neighboring filler particles
causes pronounced strain enhancement as illustrated in the car-
toon depicted in Fig. 94. The green circles are two neighboring

Fig. 92 Top: Contributions to the complex modulus (for the purpose
of the present discussion we can replace the complex modulus with the
storage modulus). Both figures are taken from H.-D. Luginsland A Review
on the Chemistry and the Reinforcement of the Silica-Silane Filler System for
Rubber Applications. Shaker Verlag:Aachen (2002). Bottom: Breakdown
of the filler network with increasing strain.

Fig. 93 Left: Filler strands within bulk-like polymer; middle: a filler-filler
contact; right: Voids between aggregates due to caused by straining the
network strands. From L. Tarrach, PhD thesis, University of Wuppertal
(2024).

filler particles, whose diameter is D, in the unstrained sample.
The resistivity experiments suggest that the gaps d between many
of the filler particles must indeed be very small (<1 nm), i.e.
d� D. Since the filler particles are not deformed when the sam-
ple experiences an external force, it must be the gap that widens
from d to d′. Therefore the strain γ on a (one-dimensional) vol-
ume element containing the filler particles is related to the strain
inside the gap γgap via

γ =
d′+D− (d +D)

d +D
≈ d′−d

D
=

d
D

γgap . (430)

Hence, γgap� γ. This calculation pertains to the cartoon. Never-
theless, the general idea applies also in a real network.

In the aforementioned strain range, the storage modulus un-
dergoes a marked reduction commonly denoted as Payne effect.

70 | 1–91 



Fig. 94 Cartoon illustrating strain enhancement in filler-filler contacts.

Somewhere between 10% and 100% strain the storage modulus
levels off. The filler-filler interaction and the in rubber structure
are mostly gone. Nevertheless, it is important to note that what-
ever is left still is significant, because the tensile strength of a
filled polymer network considerably exceeds the tensile strength
of the pure network (cf. Fig. 91) (see for instance R. Hentschke
Tensile strength of rubber described via the formation and rupture
of load-bearing polymer chains Phys. Rev. E 106, 014505 (2022)).
The amorphous polymer sheath in Fig. 93 is replaced by a multi-
tude of taut polymer chains anchored in part on the filler particle
surfaces (depicted in Fig. 95).

Fig. 95 Cartoon of load bearing polymer chains occurring at large strains.
From L. Tarrach, PhD thesis, University of Wuppertal (2024) (with per-
mission).

In the following we want to discuss selected theoretical con-
cepts, which will help us to better understand (some of) the me-
chanical behavior of filled polymer matrices. We shall talk about
’particles’ a lot - meaning minimum aggregates.

The ’hydrodynamic effect’ primarily refers to the continuum ap-
proach initially introduced by Einstein in a different but related
context (A. Einstein, Ann. d. Physik 19, 289 (1906); 34, 591
(1911)). Einstein devised a method for determining molecular di-
mension via the viscosity increase when ’large particles’ are added
to a fluid of ’small particles’. Subsequently Smallwood (H. M.
Smallwood Limiting Law of the Reinforcement of Rubber. J. Appl.
Phys. 15, 758 (1944)) published a formally identical equation:

G = Go

(
1+

2
5

φ

)
. (431)

Here φ is the filler volume fraction (The factor 2/5 is missing
in Einstein‘s original calculation. But this he later notices and

corrects the mistake.). This result is valid in the limit of small φ ,
assuming that the filler particles are hard spheres, and assuming
’no-slip’ boundaries on their surface. It is obtained by solving the
elastic equilibrium condition of the rubber treated as isotropic
elastic material with filler particle inclusions. Generalizations of
this equation to a power law series in terms of φ are discussed by
Guth (E. Guth Theory of Filler Reinforcement. J. Appl. Phys. 16,
20 (1945)); in particular we mention the expression due to Guth
and Gold (E. Guth, O. Gold Phys. Rev. 53, 322 (1938)):

G = Go

(
1+

2
5

φ +14.1φ
2
)

. (432)

While G = Go(1 + (5/2)φ is an exact result in the above limit,
which is an appealing feature, it has major shortcomings. Perhaps
most seriously, Eqs. (431) and (432) predict that the compound
modulus is independent of the size of the filler particles. This is
incorrect for modern sub-micron fillers. In the following we shall
discuss the filler induced increase of the shear modulus from
another angle.

In contrast to the no-slip boundary conditions underlying the
Smallwood equation, we assume that the adhesion of the matrix
material on the filler surface can be thought of as being due to
surface bonds contributing strength analogous to the elastomer’s
bulk cross-links. But what do we mean by ’bonds’? An example is
a polymer segment physisorbed on the surface of a filler particle.
The same polymer may possess another segment on a neighboring
particle and thus connect the two particles. Or the polymer may
be cross-linked to another polymer connected to the neighboring
particle, etc. Another example is the covalent bonding between a
particle’s surface and the polymer matrix via a silane molecule.
Yet another example is a hydrogen bond formed between the
silanol groups of two neighboring silica particles. Hence there are
many types of such molecular bonds. Of course, there are also dis-
persion forces between neighboring particles involving all atoms
in the two particles (cf. for instance J. Israelachvili Intermolecu-
lar & Surface Forces. Academic Press (1991)). However, in most
cases the latter interactions are not the dominant interactions af-
fecting the mechanical properties of the material. It is important
to note that the molecular bonds have their own temperature de-
pendence (see for instance R. Hentschke The Payne effect revisited
eXPRESS Polymer Letters 11, 278 (2017)). This means that a
(highly) filled polymer matrix follows time-temperature superpo-
sition to a lesser extend than an unfilled one.

Let’s model the filler as composed of isolated monodisperse
spherical particles with radius R. Under these conditions the mod-
ulus increase, in the limit of small shear amplitude, due to the
particle-matrix interface should scale as φR−1, i.e.

G−Go ∼
φ

R
. (433)

Again we find a proportionality to φ . But we find also that a small
particle size increases G. The derivation is as follows: NP is the
number of particles with volume vP and surface area, aP. Thus
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we have NPvP = φ . Likewise we have for the total surface area A
of the particles NPaP = A. With vP ∝ R3 and aP ∝ R2 one finds

A ∝
φ

R
. (434)

Because the increase of Go should be due to the surface bonds,
we arrive at the above conclusion. Fig. 96 shows the storage
modulus of carbon black filled polybutadiene in the limit of small
strain plotted versus the inverse diameter of the minimum ag-
gregates. These data follow the predicted 1/R-dependence quite
nicely. However, the volume fraction filler in this experiment is
0.18. This is close to the percolation threshold and the assump-
tion of isolated aggregates is not valid. Unfortunately, this author
was not able to find data for G′ vs. 1/R at filler volume fractions
significantly below the percolation threshold.
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Fig. 96 G′ at small strain amplitude vs. the inverse diameter 1/D
of the minimum aggregates according to Fig. 8 and Tab. 1 in C. G.
Robertson, C. J. Lin, M. Rackaitis, C. M. Roland Influence of Particle
Size and Polymer-Filler Coupling on Viscoelastic Glass Transition of Particle-
Reinforced Polymers Macromolecules 41, 2727 (2008). Shown here is G′

for polybutadiene at a constant volume fraction of 0.18. Measurements
were made at T =−70oC and ω = 31.4 rad/s.

However, there is more information which can be gained by
our simple reasoning. We can argue that there is an upper limit
beyond which particle size has an adverse effect on hardness.
This is because the volume of a large particle can displace more
bulk cross-links in the elastomer compared to the increase of the
number of surface bonds. This is illustrated by the sketch in
Fig. 97. Note that the number of bulk cross-links is propor-
tional to R3, whereas the number of surface bonds is propor-
tional to R2. We may estimate the cross-over radius, Rc, based on
rough estimates of both the surface bond density, ns, and the bulk
cross-link density, expressed in cross-links per rubber monomer,
ν . With 1/50 Å−2 < ns < 1/20 Å−2 (in the case of silica ) and
1/500 < ν < 1/200 we find 0.1µm < Rc < 1µm, which is in accord
with experimental observation (F. Schön Elastomer / Schichtsi-
likat Komposite: Einfluss der Füllstoffstruktur auf mechanische, dy-
namische und Gasbarriere-Eigenschaften. PhD thesis, Universität
Freiburg (2004); page 11). Small filler particles far below this
limit are called active.

Next we want to study the effect of the filler structure near
the percolation threshold. Generally, it is observed that the shear
modulus in the limit of small strain does not increase linearly with

Fig. 97 Open circles: bulk cross-links; solid circles: surface bonds.

φ but with some power y instead, i.e.

G−Go ∼ φ
y , (435)

where y can be significantly larger than unity. Let us construct an
explanation for (435) and find y.

We consider N filler particles in a volume V = L3. The filler
volume fraction, φ , therefore is given via

φ ∝
N
L3 . (436)

In a uniform system we expect in addition N ∝ L3, i.e. the filler
volume fraction does not depend on L. This means that φ is an
intensive quantity. However, if we assume instead

N ∼ Ld f (437)

with d f < 3, then the situation is different, because the system
now contains ’filler voids’ on all length scales. Such cluster struc-
tures are called fractal structures and d f is their mass fractal
dimension. By combination of (436) with (437) we find

φ ∼ L−(3−d f )→ 0 for L→ ∞ . (438)

This means that a fractal filler distribution on all length scales
throughout the rubber is not realistic!

Mechanical mixing results in a uniform system on a macro-
scopic scale, i.e. the mixing process does not allow a fractal filler
network beyond a certain linear dimension. In this case φ is fi-
nite of course. Because this is an important aspect let us be more
specific and call this length ξ , i.e. our material is a filled polymer
matrix containing fractals of size ξ , which in turn contain Nξ filler
particles. Hence

N
Nξ

∝
L3

ξ 3 (439)

and therefore
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φ ∝
Nξ

ξ 3 . (440)

Consequently we arrive at

1
Aξ

∼ φ

2
3−d f , (441)

where Aξ = ξ 2.

What is the significance of the expression (441)? The quantity
Aξ is the cross-sectional area of a fractal cluster containing Nξ

particles. Thus we may consider 1/Aξ as a measure of the density
of filler-filler contacts in a (shear) plane cross-section through a
fractal patch. Because there are on average L2/Aξ fractal patches
in the entire sample cross-section, we may consider the product
of L2/Aξ with 1/Aξ as a measure for the shear strength of the
entire sample cross-section. In order to obtain the modulus we
divide by L2, which yields

G−Go ∼
1

Aξ

L2

Aξ

1
L2 ∼ φ

4
3−d f . (442)

Of course, this should hold only if φ is large enough for the span-
ning filler network to form.

Meakin et al. (P. Meakin, B. Donn, G. W. Mulholland Collisions
between Point Masses and Fractal Aggregates. Langmuir 5, 510
(1989)) have studied the collisions between point masses and
fractal aggregates via computer simulation of different models.
They obtain d f -values ranging from 1.8 to 2.1 depending on the
model (i.e. 3.3 < y = 4/(3−d f )< 4.5). The resulting structures all
look very similar to experimental filler structures obtained from
transmission electron micrographs. Thus, a certain variation of
the exponent y appears permissible. Fig. 98 shows an experimen-
tal confirmation, where y≈ 3.5, of the picture developed here.

The fractal concept we have just outlined is not new. Signif-
icant insight was originally provided via computer simulation.
For instance the cluster-cluster aggregation model introduced by
Meakin (P. Meakin, Phys. Rev. Lett. 51, 1119 (1983)) and
Kolb (M. Kolb, R. Botet, R. Julien, Phys. Rev. Lett. 51, 1123
(1983)) initiated an upsurge of interest in the properties of ag-
gregated colloids. Subsequent simulation studies suggested that
colloidal aggregates behave as stochastic mass-fractals on a scale
large compared with the primary particle size. Experimental stud-
ies did confirm this and provided values for the fractal dimension
d f in good agreement with those obtained from Simulation (D.
A. Weitz, M. Oliveria, Phys. Rev. Lett. 52, 1433 (1984); M.
Matsushita, K. Sumida, Y. Sawada, J. Phys. SOC. Jpn. 54, 2786
(1985); W. D. Brown, R. C. Ball Computer simulation of chemically
limited aggregation. J. Phys. A: Math. Gen. 18, L517 (1985); P.
N. Pusey, J. N. Rarity, paper presented at Royal Society of Chem-
istry Symposium on Fractals in Physics and Chemistry, Salford,
1986)).

Our final expression (442) is close to one proposed by Brown
(W. D. Brown, PhD Thesis, Department of Physics, University of
Cambridge, 1987), i.e. y = (3+ dchem)/(3− d f ), where dchem is

Fig. 98 Small strain storage modulus vs filler volume fraction for a
variety of carbon black filled composites. The solid lines posses slope
3.5. This figure is a copy of Fig. 39 from M. Klüppel The Role of Disorder
in Filler Reinforcement of Elastomers on Various Length Scales Adv. Polym.
Sci. 164, 1 (2003).

the so-called chemical length exponent. An in depth discussion of
the development and application of fractal networks in the con-
text of colloidal systems can be found in A.G. Marangoni, L.H.
Wesdorp Structure and Properties of Fat Crystal Networks. Sec-
ond Edition, CRC Press (2012). Full appreciation of these ideas
in the context of filled rubbers came with the works of Heinrich,
Klüppel, and Vilgis (M. Klüppel, G. Heinrich Fractal structures in
carbon black reinforced rubbers Rubber Chemistry and Technol-
ogy, 68, 623 (1995); G. Huber, T.A. Vilgis Universal properties
of filled: Mechanisms for reinforcement on different length scales.
Kautschuk Gummi Kunststoffe 52, 102 (1999)) (as well as refer-
ences therein).

Strictly speaking the above applies close to the percolation
threshold only. At filler volume fractions far above the percola-
tion threshold we must expect a different and likely less fractal
structure. What would the result be if the filler was forming com-
pletely random connections? We consider N filler particles dis-
tributed over L3 cells in a cubic grid. The probability that a par-
ticular particle finds a particle in a neighboring cell is (neglecting
correlations) qN/L3, where q is the coordination number of the
lattice. The number of pairs formed in this fashion therefore is
proportional to N2/L3. The density of pairs is proportional to
N2/L6 = φ 2. Thus we expect

G−Go ∼ φ
2 (443)

in the case of random filler distribution. Indeed, many measure-
ments of G−Go vs. φ yield y-values close to 2.

Let us return to the dependence on particle size in the con-
text of a dense filler network. Let’s assume we compare systems
composed of spherical particles whose radii are R and 2R, respec-
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tively. In both systems the filler network structure is the same
and the filler volume fraction is also the same. This means that
we can transform the system containing the smaller particles into
the system containing the larger particles by scaling its axes by
a factor of 2. Within a fixed area in the shear plane, i.e. this
area is not scaled, this reduces the number of particle-particle
contacts by a factor 4. Our premise is that G−Go is proportional
to the number of particle-particle contacts in a shear plane and
thus G−Go ∝ R−2. However, the interaction between particles
in a contact also depends on R. This is illustrated in the sketch
shown in Fig. 99. If the forces bonding the spheres only act near
the surface (e.g. short chain segment physisorption or hydrogen
bonds), we assume a certain range between d and d + 2h, then
the interacting surface area S is given by

R

h

h
d

Fig. 99 Primary filler particles pictured as spheres at close proximity.

S = 2πRh . (444)

But even if we consider the interaction to be contributed from
atomic pair-interactions throughout the spheres the resulting in-
teraction still scales proportional to R (J. Israelachvili Intermolec-
ular & Surface Forces. Academic Press (1991) ) (the force be-
tween two spheres of equal radius R should be − A

12
R
d2 , where A is

the Hamaker constant and d (d� R) is a small surface-to-surface
separation between the spheres). Therefore all in all the two con-
tributions yield a resulting R−1-dependence, i.e.

G−Go ∼
φ y

R
. (445)

This R dependence is the same which we had found previously in
the limit of isolated particles - and this time Fig. 96 can be viewed
as a confirmation.

The position of the percolation threshold along the volume
fraction axis, φc, does depend on the particle grade / size. An
example is shown in Fig. 100. How can we understand this de-
pendence? In Eq. (441) the length ξ is expressed in units of
particle size R, i.e.

R2

(ξ R)2 ∼ φ

2
3−d f . (446)

We have stated that the length scale over which fractal filler struc-
ture can exist is determined by ξ or rather by ξ R in absolute units.
It is plausible to assume that this length scale is similar for differ-
ent R, i.e. ξ R≈ const. Hence, we find

φc ∼ R3−d f . (447)

This means that the percolation threshold shifts to larger filler
volume fractions when the filler particles are larger - in agreement
with the experimental observation in Fig. 100. The bottom panel
in Fig. 100 is a test of this relation. The slope of the linear fit to
the data is about 0.6 and thus d f ≈ 2.4. This is larger than what
we have discussed before and larger than the d f -value needed to
obtain y ≈ 3.5. However, y ≈ 3.5 is far from universal and larger
values are found as well (cf. Fig. 8 in He Xi, R. Hentschke The
influence of structure on mechanical properties of filler networks via
coarse-grained modeling. Macromolecular Theory and Simulation
(2014)). In addition, the conversion from phr to volume fraction
is approximate and so are the particle sizes, which contributes
considerable sources of error to this comparison.

Before leaving this section we want to mention the effect of
fillers on time-temperature superposition. Fig. 101 shows master
curves of the storage modulus G′ of an unfilled S-SBR sample and
the same samples filled with 60 and 80 phr of silica created with
(horizontal) shift factors from the unfilled sample. While Eqs.
(271) and (270) work very well for unfilled samples, as we have
seen numerous times before, they do not work equally well when
there is filler in the polymer. Why is this? The temperature depen-
dence of our shift factor aT rests on the assumed linear tempera-
ture dependence of the free volume. By adding filler we introduce
interfaces into the system. These are interfaces between filler and
polymer and between filler particles contain bonds (cf. above).
In the case of silica, for instance, we find hydrogen bridge bonds.
These hydrogen bridge bonds may connect adjacent particle sur-
faces or they may connect an OH-group on a silica surface to a
water molecule above the surface (in the case of silica, a certain
amount of water, perhaps a couple of % by filler weight, is always
present). In any case, the number of such bonds depends on tem-
perature akin to the equilibrium constant in a chemical reaction
(cf. R. Hentschke The Payne effect revisited eXPRESS Polymer Let-
ters 11, 278 (2017)). Since the number of (reversible) bonds
does affect the coupling of the filler particles among themselves
as well as their coupling to the polymer matrix, it may not be
surprising that this new temperature dependence, which is dif-
ferent from the temperature dependence of aT in a pure polymer
system, does interfere with time-temperature superposition as we
had discussed it. Improved master curves in filled systems can
be obtained if the horizontal shift factor aT is supplemented by a
second vertical shift factor (see J. Fritzsche, M. Klüppel Structural
dynamics and interfacial properties of filler-reinforced elastomers.
Journal of Physics: Condensed Matter 23, 035104 (2011)).
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2

areas which have to be overcome by the
electrons.

• Porosity
- Highest porosity increases the volume

taken up by the carbon black. This leads to
higher electrical conductivity.

• Volatile matters
- Volatiles on the carbon black surface

lead to a reduced resistivity of the
individual carbon black particles.

In the rubber industry carbon blacks are
incorporated into the rubber matrix by use of
various mixing devices. In order to ensure the flow
of electrons through the rubber compound it is not
necessary for the dispersion of the carbon black
particles in the polymer to be at its optimum.
However, for other reasons the production of
rubber compounds aims to achieve optimum
dispersion of carbon black, leading to a polymer
matrix with homogeneously distributed carbon
black aggregates. This means that depending on
the shear forces applied during mixing the
electrical conductivity may decrease with
increased dispersion rating, but also due to a
structure degradation of the carbon black.

Further processing of rubber compounds may also
influence the electrical properties. This can partly
be explained by changes in distribution and
dispersion of the carbon black agglomerates. Also
the orientation of the polymer chains as well as of
the carbon black aggregates in the direction of
flow has an impact on the conductivity.

Moreover the service conditions of the rubber
product like compression, extension and flexing
have an influence on electrical properties. The
changes in conductivity depend on amplitudes
and frequencies. Also environmental influences
like light, air, exposure to solvents and operating
temperature can play an important role in the
change of properties.

A typical attribute of rubber articles is the very
high electrical resistivity, which is undesired in a
number of applications and sometimes can cause
dangerous situations (e.g. electrostatic charges at
gasoline hoses).

The electrical properties of rubber compounds are
usually divided into three main areas:

• 1015 - 109 Ohm×cm insulating
• 104  - 109 Ohm×cm antistatic
• < 104 Ohm×cm conductive

Insulating/electrostatic range
In the insulating range with a volume resistance of
1015 - 109 Ohm×cm electrostatic charges can be
generated. The level of these charges depends on
the specific parameters of the material like
electrical conductivity and dielectric constant.
Further details about electrostatic charge (cause,
effect and measurement) are described in the
Degussa brochure Pigments No. 69.

Electrical conductivity
The range of electrical conductivity can be split
into the range of antistatic and electrically
conductive compound properties.

In a standard test formulation based on SBR 1500
the electrical conductivity values of several ASTM
and special carbon blacks were measured as
function of the filler loading.

Test recipe:
SBR 1500: 100 phr; ZnO: 3 phr
Stearic acid: 1 phr; CBS: 1 phr; Sulfur: 2 phr

Electrical Resistivity (DIN 53482)
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The graph above demonstrates that normal
furnace blacks donate a certain electrical
conductivity. If only antistatic properties are
required, highly active carbon blacks as well as
semi active carbon blacks including N 550 can be
used. However, it is important to use a suitable
volume of carbon black.
If electrically conductive rubber articles with a
volume resistance < 104 Ohm×cm are required it
is necessary to use "conductive carbon blacks"
like Printex L 6 and Printex XE 2. Their typical
values, which are relevant for the electrical
conductivity are listed in Table 1.
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Fig. 100 Top: Resistivity data across the percolation threshold for differ-
ent grades of carbon black from Carbon Blacks for Electrically Conductive
Rubber Products, Technical Report 812, Degussa AG, Advanced Fillers
and Pigments Division, Applied Technology Advanced Fillers (Remark:
the company is now Evonik and the (nice) technical reports are difficult
to obtain, unfortunately.). Bottom: determination of the exponent 3−d f
from a plot of logφc, where φc is the filler volume fraction at the inflection
point of the resistivity data, versus logD, where D is the corresponding
aggregate size taken again from Tab. 1 in C. G. Robertson, C. J. Lin, M.
Rackaitis, C. M. Roland Influence of Particle Size and Polymer-Filler Cou-
pling on Viscoelastic Glass Transition of Particle-Reinforced Polymers Macro-
molecules 41, 2727 (2008). The data points are for N115, N220, N375,
N330, N550, and N660. The polymer is SBR 1500.

Finally, we have not yet and will not discuss filler particles pos-
sessing anisotropic shape, e.g. carbon nanotubes (CNT). Partic-
ularly CNTs have been the focus of intensive research for some
time. Even in small amounts (a few % by weight) they rein-
force an elastomer matrix considerably. However, fillers possess-
ing high shape anisotropy can be difficult to disperse properly.
They tend to align and aggregate (we shall learn something about
the underlying physical principles in the section on liquid crys-
tallinity), which may not always be desired. In addition, the in-
terface between the CNTs and polymer matrices poses additional
new challenges. The interested reader may look up the following
reference: M. Loos Carbon Nanotube Reinforced Composites. CNR
Polymer Science and Technology, Elsevier Inc. (2015).

Even though this discussion of filler effects is rather limited,
it highlights that fillers do have a very significant influence on
the properties of a polymer material. It should also be clear that
reliable or quantitative (and sometimes even qualitative) theories
for the prediction of filler effects do not exist at this time.

Fig. 101 Master curves of the storage modulus G′ of an unfilled S-SBR
sample and the same samples filled with 60 and 80 phr of silica created
with (horizontal) shift factors from the unfilled sample. This is Fig. 4(a)
taken from J. Fritzsche, M. Klüppel Structural dynamics and interfacial
properties of filler-reinforced elastomers. Journal of Physics: Condensed
Matter 23, 035104 (2011).

6.3 Stable and Labile Liquid Crystalline Polymers

Stable Liquid Crystalline Polymers:

A summary of what we want to talk about in this section is
depicted in Fig. 102. The cartoon at the top shows randomly
oriented, bend-elastic rod-like polymers in solution at low con-
centration. Remember that in section 3.1 we had mentioned poly-
mers which can be described as homogeneously bend-elastic. One
example, PBLG, is shown in Fig. 14. The quantity characterizing
their flexibility is the persistence length P defined in Eq. (40).
Upon increasing the concentration, the polymers are forced to
align along a spontaneously chosen direction called the director.
Here we consider polymers with fairly short-ranged interactions,
which to good approximation can be described as hard but flexi-
ble cylindrical rods. What forces them to align is their excluded
volume. Specifically, it is the competition of orientation entropy
versus packing entropy. The alignment is measured using the ori-
entation distribution function f (θ), where θ is the angle relative
to the director. If the orientation is isotropic, then f (θ) is con-
stant. Otherwise it exhibits maxima at θ = 0,π. The two types of
ordering correspond to two phases, the isotropic phase and the
nematic phase. How to describe the transition from one phase
into the other is our main objective here. However, other so-
called liquid crystalline phases can occur as well. Two examples
are shown at the bottom of Fig. 102. In a hexagonal columnar
phase the centers of mass of the rods tend to form a hexagonal
lattice if we look along the rods’ axes. If we look at the rods from
the side, their centers of mass appear distributed randomly. In
this sense a columnar phase can be described as a combination of
a two-dimensional solid with one-dimensional liquid. A second
example of a liquid crystalline phase is a smectic phase. In a
smectic phase the molecules form layers. Hence a smectic phase
may be described as the combination of a two-dimensional liquid
parallel to the layer boundaries with a one-dimensional crystal in
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the perpendicular direction. If concentration (via excluded vol-
ume) is the main driving variable taking the system from one
phase to another we call this type of liquid crystalline behavior
lyotropic. If temperature is the main driving variable we call that
type of liquid crystalline behavior thermotropic. However, this
distinction is not absolute and lyotropic liquid crystals do posses
temperate dependence as well - either via the temperature depen-
dence of their bending rigidity or via ’soft’ interactions. Since the
persistence length P is important for the relative stability of the
liquid crystalline phases formed by rod-like polymers, we briefly
digress and discuss the temperature dependence of P.

concentration increases

director

columnar phase: 

1D liquid & 2D crystal

smectic phase: 

2D liquid & 1D crystal

0 π
2

π
θ

f(θ)

isotropic

0 π
2

π
θ

f(θ)

nematic

Fig. 102 Top: Randomly oriented rod-like polymers in solution at low
concentration on the left vs. the same polymers at a higher concentra-
tion when their interaction forces them to preferentially align. Middle:
Sketches of the orientation distribution function f (θ) in the two cases or,
as we shall find out, phases called the isotropic phase and the nematic
phase. Bottom: Cartoons depicting two other possible liquid crystalline
phases, i.e. a hexagonal columnar and a smectic phase.

We may express the partition function of a persistent flexible
polymer via

Q =
∫ (dΩ

4π

)N
exp[−βH] , (448)

where

H =−J ∑
i
~ti ·~ti+1 (J > 0) . (449)

Let’s momentarily assume that J is a constant. Hence

Q = Π
N
i=1

∫
π

0

dθ sinθ

2
exp[J cosθ ] =

(
sinhβJ

βJ

)N
. (450)

Here the quantity θ is the angle between neighboring tangent
vectors along the contour. From (450) we find 〈cosθ〉, i.e.

〈cosθ〉= 1
N

∂ lnQ
∂ (−βJ)

= cothβJ− 1
βJ
≈ 1− 1

βJ
(βJ� 1) . (451)

Note that βJ� 1 is the proper limit, because we want 〈cosθ〉 ≈
1−〈θ 2〉/2 (cf. Eq. (42)). Using Eq. (43) we find

P =
bJ

kBT
. (452)

Thus, P ∼ T−1. Note however, that this is a model in which bJ is
a constant. In a real persistent flexible molecule bJ itself usually
depends on temperature, which modifies P∼ T−1 of course.

Eq. (452) can be obtained quite differently using fluctuation
theory. This approach is very insightful - as we shall see when
we discuss the persistence length of polyelectrolytes. However, in
order to avoid distraction from our current line of thought, the
calculation of P from fluctuation theory is moved to appendix B.

The following consists of three parts. First we want to study
the statistical mechanics of the isotropic to nematic transition of
monodisperse rods depending on number concentration ρ, aspect
ratio x = L/D, where L and D are the length and the diameter
of the rod-like polymers respectively, and flexibility L/P. Sub-
sequently we want to discuss, without explicit calculations, how
to modify our theory in order to accommodate other phases ex-
hibiting orientational and translational order. Finally, we need to
discuss applications.

We begin by deriving the orientation entropy ‡‡, expressed in
terms of f (θ), of what we had called a wormlike chain, i.e. a
cylindrical object to which Eq. (40) applies. We use the self-
consistent field method, where our starting point is Eq. (64):

Qn+1(~t1,~tn+1) = Qn(~t1,~tn+1)

+
1
2

∫ ′ dΩn

4π

(
~tn−~tn+1

)2
∆ΩQn(~t1,~t)

∣∣
~tn+1

+

− βu(~tn+1)Qn(~t1,~tn+1) . (453)

Here xn is replaced by~tn, which is the unit tangent vector of the
worm’s contour at the nth element of length b (cf. Fig. 14). The
linear term in the expansion vanishes as before in Eq. (64). In
addition, ∑xn

′ is replaced with
∫ ′ dΩn/(4π). Note that the ori-

entation of each tangent vector is defined by the angles ϕ and
θ , i.e. ~t =~t(ϕ,θ). θn+1 is the angle between ~tn and ~tn+1 and
ϕn+1 is the rotation angle of ~tn+1 around the direction defined
by ~tn. Hence dΩn = sinθndθndϕn. Finally, ∆Ω = (sinθ)−2∂ 2

ϕ +

‡‡ At this point ’conformation entropy’ may be the better expression. What this has to
do with orientation will become clear as we move along.
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(sinθ)−1∂θ (sinθ ∂θ ) is the angular part of the Laplace operator.
We evaluate the integration as follows:

∫ ′ dΩn

4π

(
~tn−~tn+1

)2
= (454)

2
∫ ′ dΩn

4π
(1− cosθn)≈

∫ ′ dΩn

4π
θ

2
n =

1
2
〈θ 2

n 〉 .

Here we have used that the local bending of the contour is small.
And note that, as the prime on the integral indicates, there is only
one general direction for ~tn, which is responsible for the factor
1/2. Similarly we may expand the two sides in Eq. (40), which
yields

〈θ 2
n 〉 ≈

2b
P

. (455)

Putting (454) and (455) together and following the step from
(65) to (66), Eq. (453) becomes

dQL(~t ′,~t )
dL

=
1

2P
∆ΩQL(~t ′,~t )−β

u(~t )
b

QL(~t ′,~t ) , (456)

where L = nb.
Since (456) is the equivalent of Eq. (66), we find

−µo

b
ψo(~t ) =

1
2P

∆Ωψo(~t )−β
u(~t )

b
ψo(~t ) (457)

and

∆Forient

LkBT
≈ 1

b
µo . (458)

Hence the conformational entropy becomes

∆Sorient

kB
=

∆Eorient

kBT
− ∆Forient

kBT
=

L
b

∫ dΩ

4π
f (~t )βu(~t)− L

b
µo . (459)

Note that f (~t ) is the orientation probability distribution of the~t. It
plays the role of c(x) in Eq. (71) and thus f (~t ) = ψ2

o (~t ). If we use
this in conjunction with Eq. (457), the conformational entropy
becomes

∆Sorient

kB
=

L
2P

∫ dΩ

4π
ψo(~t )∆Ωψo(~t ) . (460)

Our worms possess a cylindrical cross section and thus f (~t) =
f (θ). Hence

∆Sorient

kB
=

L
2P

∫ dθ

2
ψo(θ)∂θ sinθ∂θψo(θ) (461)

p.i.
= − L

2P

∫ dΩ

4π
(∂θ ψo(θ))

2 ,

where p.i. stand for ’partial integration’. We obtain ∆Sorient in its
final form by replacing ψ(θ) with

√
f (θ), i.e.

∆Sorient

kB
=− L

8P

∫ dΩ

4π
[∂θ f (θ)] [∂θ ln f (θ)] . (462)

There is another limit, which is of interest here. In this limit
P� L, which means that the worms essentially are rigid cylinders.
What is ∆Sorient in this limit? The classical partition function of
an N-point particle gas contains a factor N!−1, which accounts
for the indistinguishability of the particles. If the particles come
in groups i (= 1,2, . . .) and if only the Ni particles belonging to
the same group are indistinguishable, then this factor becomes
ΠiNi!−1 instead, where ∑i Ni = N.

Here the particles in group i are the cylinders whose axes lie
within the solid angle dΩi and Ni/N = f (θi). With this we find

lnΠiNi!−1 = N ∑
i

(
−Ni

N
ln

Ni

N
+

Ni

N

)
−N lnN (463)

=−N
∫ dΩ

4π
f (θ) ln f (θ)−N lnN +N .

Note that we have made use of Stirling’s formula (141). Obvi-
ously, the integral accounts for the entropy tied to the orientation
distribution of the particles, i.e. the cylinders. Specifically,

∆Sorient

kB
=−

∫ dΩ

4π
f (θ) ln f (θ) (464)

is the equivalent to (462) in this limit.
A formula for the orientation entropy joining the two limits

(462) and (464) was derived by Khokhlov and Semenov (A. N.
Semenov and A. R. Khokhlov Statistical physics of liquid-crystalline
polymers. Sov. Phys. Usp. 31 988 (1988)) based on work by I.
M. Lifshitz (see also R. Hentschke Equation of State for Persistent-
Flexible Liquid-Crystal Polymers. Comparison with Poly(γ-benzyl-
L-glutamate) in Dimethylformamide. Macromolecules 23, 1192
(1990)). For the purpose of this section, however, the limiting
expressions (462) and (464) are sufficient.

In order to be able to find out whether there is a phase transi-
tion from an isotropic to a nematic phase, we need to derive the
entire free energy for the system. In particular we need to include
the interaction between the polymers. For this purpose we return
to the first and prototypical calculation of this type carried out by
Lars Onsager (The Effects of Shape on the interaction of Colloidal
Particles., Ann. N.Y. Acad. Sci. 51, 988 (1949)). Onsager’s free
energy for hard rigid cylinders has the form

F
NkBT

=
µo

kBT
+σ( f )+ lnρ−1+ xφ g( f ) . (465)

The first term lumps together all contributions to the free energy
which do not depend on the orientation and/or concentration of
the rodlike particles. σ( f ) is simply −∆Sorient/kB in Eq. (464).
In the next term, ρ = N/V is the number density of cylinders. In
the last term x = L/D, the length of the cylinder divided by its
diameter, and φ = xb, where b is the volume of a cylinder. This
term, which corresponds to the second order in a virial expansion,
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is the excluded volume between the cylinders. The function g( f )
is given by

g( f ) = 64π

∫ ∫ dΩ

4π

dΩ′

4π
f (θ) f (θ ′)|sin(Ω−Ω

′)| , (466)

where Ω−Ω′ denotes the angle between the axes of two interact-
ing cylinders. Note that DL2|sin(Ω−Ω′)| is the volume which one
cylinder excludes to the center of mass of the other (remember
the geometrical meaning of the cross product between to vec-
tors). Onsager did his calculation for spherocylinders, i.e. cylin-
ders with hemispherical endcaps, in order to avoid the complexity
of the ’naked’ cylinder ends.

It is useful to describe f (θ) via a trial function, which is close to
the expected shape of the true orientation distribution function.
Onsager choses

f (θ) =
α

sinh(α)
cosh(α cosθ) . (467)

Note that this orientation distribution is equal to one if α = 0,
which is the isotropic situation. In the nematic case it exhibits
two maxima at θ = 0 and θ = π, respectively. Using this trial
function we obtain for σ( f )

σ( f ) =


0 α = 0

lnα−1 α → ∞ (P� L)
L

4P (α−1) α → ∞ (P� L)
. (468)

Note that we still concentrate on the limit P� L, even though
here we have added σ( f ) in the opposite limit for later use! In
addition, Onsager obtains an analytic solution of the interaction
integral for which it is straightforward to also write down the
limiting expressions:

g( f ) =
2I2(2α)

sinh2
α

=

{
1 α = 0

4(πα)−1/2 α → ∞
. (469)

Here I2 is a modified Bessel function (e.g. M. Abramowitz, I.
A. Stegun Handbook of Mathematical Functions. Dover:New York
(1972); section 9.6).

In a potential anisotropic phase (index a) the parameter α must
satisfy dFa/dα = 0, which yields

αa =
4
π

x2
φ

2
a . (470)

The coexisting volume fractions φi and φa along an isotropic to
anisotropic (nematic) phase boundary follow from the conditions
that the osmotic pressure

Π =−dF
dV

= kBT b−1
φ (1+ xφg( f )) (471)

and the chemical potential

µ =
dF
dN

= µo + kBT (σ( f )+ ln(φ/b)+2xφg( f )) (472)

of the rods are the same on the two sides of the transition. Setting
Πi = Πa and µi = µa leads to

φ
′
i (1+φ

′
i ) = 3φ

′
a (473)

lnφ
′
i +2φ

′
i = 3lnφ

′
a +3+ ln(4/π) , (474)

where φ ′i = xφi and φ ′a = xφa. These equations possess the stable
solution

φi ≈ 3.45
D
L

, φa ≈ 5.12
D
L

, and αa ≈ 33 (475)

(the exact numerical values of the numbers multiplying D/L are
3.29 and 4.19, respectively). Note that the large value of αa jus-
tifies the assumption of large α in the anisotropic phase.

Ordinarily, the second virial approximation of the particle-
particle interaction is not sufficient for this type of calculation.
Here, however, we assume that x is so large that both φi and
φa are sufficiently small to permit the use of the second virial
approximation with reasonable accuracy. The experimental sys-
tem which Onsager originally had in mind is tobacco mosaic virus
(TMV). TMV is a highly elongated, stiff virus particle 300nm in
length and 18 nm wide (x ≈ 17) composed of over 2000 protein
segments. Fig. 103 shows a electron micrograph image of TMV.

Perhaps it is worth noting that Onsager’s inspiration most likely
did not come from possible industrial applications of liquid crys-
talline polymers - this type of research gained traction later in the
1960s with the advent of liquid crystal display technology and
high strength polymer fibers. He was interested in the physics of
phase transitions in general.

Fig. 103 Electron micrograph of TMV.

Let’s look what happens if we consider the other limit, i.e. L�
P. The free energy we use in his case is again (466) with σ( f )
now being the second expression in Eq. (468)
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F
NkBT

=
µo

kBT
+

L
P

α−1
4

+ ln(ρp/bp)−1+
L
P

xφp g( f ) , (476)

where bp = π

4 D2P and φp = bpρ. We want to study the limit
L/P→ ∞ and this form of the free energy highlights the domi-
nant terms in this limit. In addition we assume that the excluded
volume interaction remains what it was before. This is not really
correct, but the approximation has proven to be useful. As before
we minimize the free energy with respect to α and work out the
osmotic pressure as well as the chemical potential. This yields

−1
4

= φ̃a g′(αa) (477)

φ̃
2
i = φ̃

2
a g(αa) (478)

φ̃i = φ̃a g(αa)+
αa−1

8
, (479)

with φ̃ = P
D φ , g(α) = 4/

√
πα and g′(α) = −2/

√
πα3. This time

the numerical solution is

φi ≈ 7.12
D
P

, φa ≈ 8.75
D
P

and αa ≈ 11.6 . (480)

The value we find for αa is not very large, which means that our
solution is not accurate. We also need D� P in order for the
transition to occur at sufficiently small volume fractions. How-
ever, here we are interested in the qualitative picture only. Most
importantly we learn that the coexistence is shifted to higher vol-
ume fractions with increasing flexibility, i.e. smaller persistence
length.

Figure 104 is an application of what we have discussed thus far.
The osmotic pressure data were obtained for PBLG in an organic
solvent - dimethylformamide (DMF). The dashed line is Onsager’s
theory as we have discussed it except for one difference. Here the
authors have not used the approximations for large α. Instead
they compute the free energy, the osmotic pressure as well as
the chemical potential numerically, but nevertheless based on the
above trail function. The solid line, which is a much better fit to
the data, includes the flexibility of PBLG. Again the authors do
not use the limiting forms of σ( f ). Instead they use the afore-
mentioned interpolation formula, which approximates σ( f ) for
arbitrary L/P. Here the persistence length (P ≈ 200 nm) is an
adjustable parameter.

In addition to the isotropic-to-nematic transition, the figure
also includes a third phase, i.e. a columnar phase. Avoiding all
details, which can be found in R. Hentschke, J. Herzfeld Isotropic,
nematic, and columnar ordering in systems of persistent flexible
hard rods. Phys. Rev. A 44, 1148 (1991), the underlying idea
is quite straightforward. In a columnar phase, the part of the free
energy modelling the excluded volume interaction is assumed to
be the sum of two terms, i.e.

Fex.vol.(∆) = F1D
f luid(∆)+F2D

crystal(∆) . (481)

Fig. 104 Experimental and theoretical reduced osmotic pressure of
PBLG in DMF vs. solute volume fraction. This is Fig. 3 from R.
Hentschke, B. Fodi Theory of the Supramolecular Liquid Crystal (Chap-
ter 2 in Supramolecular Polymers (Marcel Dekker:New York) edited by
A. Ciferri (2000)). Here b is the molecular volume. Solid line: Theory
based on the Khokhlov-Semenov approach to flexibility in combination
with the decoupling approximation and the dimensional separation ap-
proach based on Eq. (8) in R. Hentschke, J. Herzfeld. Phys. Rev. A
44, 1148 (1991). Upper dotted line: Extension of the isotropic branch.
Lower dotted line: Extension of the nematic branch. Dashed-dotted line:
Result for completely rigid molecules. Dashed line: Onsager’s 2nd virial
coefficient-approximation for rigid rods.

F1D
f luid(∆) is the excluded volume part of the free energy of a one-

dimensional hard body fluid. F2D
crystal(∆) is the analogous part of

the free energy of a two-dimensional system of hard disks ex-
hibiting hexagonal ordering. Here F1D

f luid(∆) is realized via the so-
called scaled particle theory (see for instance R. Hentschke Ther-
modynamics (2nd ed.)), whereas F2D

crystal(∆) is realized using a cell
model (see for instance J. O. Hirschfelder, C. F. Curtiss, R. B. Bird
Molecular Theory of Gases and Liquids. John Wiley & Sons:New
York (1954)). What combines these two expressions into the
three-dimensional Fex.vol.(∆) is the quantity ∆. This quantity is
depicted in Fig. 105. It is the width of a tube to which the poly-
mer is confined. Viewed along the direction of the polymer back-
bone, it is the width of the aforementioned 2D cell (a hexagon in
this particular case). Note that the 3D polymer volume fraction
φ therefore is a unique function of ∆ as well. Note also that ∆

in conjunction φ determines the 1D polymer volume fraction in
F1D

f luid(∆), i.e. this is why F1D
f luid also depends on ∆. For any fixed

value of φ the most stable free energy is found via minimization
of the 3D free energy with respect to ∆.

If the polymer is flexible, then there also exists a relation be-
tween ∆ and α. According to Fig. 105 the polymer contour winds
its way along the tube and is defected by the tube’s wall every
so often. The mean distance between successive deflections is λ ,
which is called the deflection length (a term originally coined by
T. Odijk). Based on this picture we construct a relation between
∆ and λ via
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∆−D∼
∫

λ

0
〈θ(s)2〉1/2ds∼ λ 3/2

P1/2
, (482)

where we use 〈θ(s)2〉 ∼ s/P according to 〈~t(0) ·~t(s)〉 = 〈cosθ(s)〉
≈ 1+ 1

2 〈θ(s)
2〉 ≈ 1+s/P. Similarly we make use of 〈θ 2(λ )〉 ∼ λ/P

and 〈θ 2(λ )〉 ∼ α−1, i.e.

λ ∼ P
α

. (483)

Putting everything together we have

α = κ[P/(∆−D]2/3 , (484)

where κ = O(1) is an undetermined (and thus adjustable) propor-
tionality constant.

Fig. 105 Cartoon of a persistent flexible polymer inside a tube of di-
ameter ∆. The quantity D is the diameter of the polymer and λ is the
so-called deflection length explained in the text. This is Fig. 1 from R.
Hentschke, J. Herzfeld. Phys. Rev. A 44, 1148 (1991).

Figure 106 shows the phase behavior of persistent flexible poly-
mer with hard-body excluded volume interactions as a result of
this theory. Independent of the value of κ, the general phase be-
havior is the following. Stiff polymers undergo a transition from
isotropic (I) to nematic (N) at a volume fraction determined by
their aspect ratio, i.e. the larger L/D becomes the smaller φi and
φa will be. At significantly higher volume fractions a transition
into a columnar (C) phase occurs. With increasing flexibility the
transition from I to N is postponed to larger φ until finally the
nematic phase is squeezed out between the I and C phases.

It is important to note that this theoretical approach to trans-
lational ordering, intuitive though it is, has one significant draw-
back. Since the free energies of these orderings are constructed
as separate branches, the resulting transition will always be a first
order transition even if the true transition is not first order.

Thus far we have dealt with hard-body or athermal interactions
between rod-like flexible polymers. A rich and different phase be-
havior is encountered for soft interactions. Fig. 107 shows an
example taken from the book by Grossberg and Khokhlov. Here
the interaction between the rod-like molecules, possessing a small
aspect ratio, is attractive. The resulting phase diagram resembles
the gas-liquid-solid phase diagram of a simple liquid, except that
the narrow phase coexistence separates an isotropic fluid from
a nematic liquid at fairly high volume fraction. When the as-
pect ratio is large, a similar phase diagram is obtained. In this
case the narrow phase coexistence funnel appears at low volume
fractions. In addition, the one phase region bracketed between
the critical temperature Tcr and the triple point temperature Tt as
well as between the funnel and the broad coexistence region is

Fig. 106 Phase diagrams for persistent flexible polymers for three dif-
ferent axial ratios and continuously variable persistence length. Solid
lines: κ = 3.5; dashed lines κ = 2.5. This is Fig. 2 from R. Hentschke, J.
Herzfeld. Phys. Rev. A 44, 1148 (1991).

not an isotropic fluid as before but a nematic - albeit less ordered
than the nematic phase on the far side of the funnel. What is not
shown here, but is discussed in the aforementioned book, is what
happens to this phase diagram in the crossover region between
small and large aspect ratios or what happens as function of the
persistence length.

All in all the above is only a very small fraction of what has
been studied. Important aspects include not only different types
of interactions but also polydispersity, molecular shape, or, more
generally, molecular architecture (e.g. instead of the macromolec-
ular contour, on which we have concentrated here, much smaller
side groups tethered to the backbone may be the actual meso-
gens causing liquid crystalline ordering). Since this is not the
place for an in depth discussion, a few references must suffice.
Early but nonetheless valuable references include T. Odijk Theory
of Lyotropic Polymer Liquid Crystals. Macromolecules 19, 2313
(1986), G. J. Vroege, H. N. W. Lekkerkerker Phase transitions in
lyotropic colloidal and polymer liquid crystals Rep. Prog. Phys. 55,
1241 (1992), and H. N. W. Lekkerkerker, G. J. Vroege. Lyotropic
Colloidal and Macromolecular Liquid Crystals. Philosophical Trans-
actions: Physical Sciences and Engineering 344, 419 (1993). A
comprehensive discussion of the subject can be found in A. M.
Donald, A. H. Windle, S. Hanna Liquid Crystalline Polymers Cam-
bridge University Press:Cambridge (2005). Quite recently there
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Fig. 107 Theoretical phase diagram, inverse reduced temperature vs.
polymer volume fraction, of a liquid crystalline solution of rod-like poly-
mers with a short aspect ratio. θ is the θ -temperature. The shaded
region indicates phase coexistence. Excerpt from Fig. 5.4 in the book
by Grossberg and Khokhlov.

is renewed interest from the computer simulation community in
this subject. See for example K. Binder, S. A. Egorov, A. Milchev,
A. Nikoubashman Understanding the properties of liquid-crystalline
polymers by computational modeling. J. Phys. Mater. 3 032008
(2020) and references therein.

We have not yet mentioned any applications of liquid crys-
talline polymers. Here are a few: ropes & cables, electronic
support structures, recreation & leisure industry aerospace &
military, new textiles, industrial applications. One material
property of particular importance is tensile strength (which
can easily surpass that of steel). Tensile strength is greatly
enhanced if one succeeds in aligning the polymer backbones
in the direction of the force (Kevlar perhaps is the best-known
example). This is the principle underlying the high strength
polymer fibers can exhibit. When such fibers are spun from the
melt or a solution, the flow field in the nozzle already tends to
promote alignment of the stiff backbones. Subsequently the fiber
is stretched. Again, the crowding of the backbones enhances
alignment. Since the molecules are highly stretched, the elonga-
tion of such a fiber at break is only a few percent. The amount
of stretching is described by the so-called spin stretch factor.
While these industrial manufacturing processes are complicated
in detail, theoretical concepts like the ones just outlined help
to understand and optimize them. It is worth noting that the
resulting high strength fibers are highly anisotropic, which has
an important consequence. While the tensile strength is greatly
enhanced by molecular alignment, the compressive strength
suffers significantly, i.e. the fiber’s shear modulus is small. The
tensile strength of a high strength fiber tied into a knot therefore
is very much reduced. An informative reference in this context is
I. M. Ward (Ed.) Structure and Properties of Oriented Polymers.
Springer:Dordrecht (1997).

Reversibly Assembling Liquid Crystalline Polymers:

Thus far we have considered systems possessing a stable meso-
genic unit, i.e. the mesogen itself does not change, e.g. as a
function of concentration. This is quite different in so-called self-
assembling systems, where the molecules form labile supramolec-

ular structures above a critical concentration (the critical micelle
concentration or CMC). Here, labile means that these structures
are generally not held together by covalent bonds, but by much
weaker van der Waals, hydrophobic, hydrogen bridge or electro-
static interactions, so that they can break down and rebuild. Such
structures appear, for example, as spheres or cylinders (compact
forms are usually referred to as micelles), as lamellar bilayers or
as complex sponge-like structures (see for instance J. Israelachvili
Intermolecular and Surface Forces. Academic: New York (1992);
D. F. Evans, H. Wennerstrom The Colloidal Domain. VCH Pub-
lishers:Weinheim (1994)). Which structures are observed, or
whether the existing supramolecular structure transforms into
a different new supramolecular structure, depends in detail on
many variables in addition to the concentration, such as the tem-
perature, the composition (in multicomponent systems), the ionic
strength, etc. In the following we shall focus on reversibly ag-
gregating amphiphilic systems, forming simple compact shapes
that can be described as flexible rods. Note that amphiphiles
are bi-polar molecules, such as surfactants or lipids, which have
a hydrophobic and a hydrophilic part, so that in aqueous solution
there is a tendency for the hydrophobic parts to combine (as far as
sterically possible) in order to reduce the unfavorable interaction
with water as much as possible (’hydrophopic effect’).

In the case of shape-anisotropic aggregates one can imagine
that the excluded-volume interaction of the aggregates may lead
to the formation of liquid crystalline mesophases. And indeed,
many self-aggregating amphiphilic systems exhibit mesophases
characterized by different, e.g. nematic, smectic, columnar, or
crystalline, ordering of their aggregates (M. P. Taylor, J. Herzfeld,
J. Phys.: Condens. Matter 5, 2651 (1993)). However, since the
underlying mesogen is no longer a stable unit, there is an inter-
esting coupling tying the variability of the mesogen to the phase
behavior. Before we progress further along this direction, it is
useful to summarize the basic picture of micellar assembly.

Figure 108 is a sketch of amphiphilic molecules reversibly as-
sembling into spherical micelles. Here the head groups, shown
as filled black circles, preferentially mix with water, whereas the
tails, depicted as zigzag-lines, do not like to mix with water. This
leads to a clustering of the zigzag tails into droplets shielded
on the outside by the head groups. Clearly, we are interested
in aggregation leading to aggregates with a pronounced shape
anisotropy, because we want to study the type of liquid crystalline
ordering which we have discussed in the preceding section. Nev-
ertheless, the following thermodynamic considerations apply in-
dependent of the aggregate shape.

The starting point is the reaction equilibrium

sA1 ⇀↽ As . (485)

As denotes a s-aggregate containing s monomers A1. In terms of
the chemical potential we have

sµ1 = µs . (486)

Assuming that the solute concentration is low, this can be ex-
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s-aggregate
xs
µs

monomer
s = 1

x1
µ1

Fig. 108 Illustration of the reversible assembly of amphiphilic molecules.
Here the aggregates are spherical micelles. This is Fig. 3.12 from R.
Hentschke Thermodynamics (2nd ed.) Springer:Heidelberg (2022).

pressed as

sµ̄1 + sRT lnx1 = µ̄s +RT ln(xs/s) . (487)

Note that the quantity xs/s is the mole fraction s-aggregates and
therefore xs is the mole fraction of monomers in s-aggregates.
Solving (487) for xs yields

xs = s(x1eα )s , (488)

where

α =
1

RT

(
µ̄1−

1
s

µ̄s

)
. (489)

Eq. (488) has an interesting consequence. Note that the total
monomer mole fraction is given by

x = x1 +
∞

∑
s=m

xs . (490)

Here x1 is the mole fraction of the free monomers, whereas the
sum is equal to the mole fraction contributed by the monomers
bound in aggregates. The quantity m is a minimum aggregate
size. For spherical micelles it results form the requirement that a
certain number of head groups are needed to form a closed sur-
face. This number may be large - say m≈ 50 - depending of course
on the type of monomer. But m = 2 is also possible, for instance
in the case of stacking amphiphiles forming rod-like aggregates
(see for example N. Boden in Micelles, Membranes, Microemul-
sions, and Monolayers (W. M. Gelbart, A. Ben-Shaul, D. Roux;
Eds.) Springer-Verlag:Heidelberg (1994)). Since x ≤ 1, the right
side of Eq. (490) is bounded. This implies that x1eα < 1, because
the sum ∑

∞
s=m sqs diverges at q = 1 (geometric series!). Hence,

xCMC = e−α (491)

defines a threshold mole fraction, which the free monomers can-
not exceed. Instead they condense into aggregates if the over-
all solute mole fraction increases beyond xCMC. The correspond-
ing concentration is called critical micelle concentration (CMC) or,

more generally, critical aggregate concentration. The sharpness of
this condensation transition is governed by the size of m, i.e. in-
creasing m sharpens the onset of aggregate formation.

Let’s conclude this discussion by studying the dependence of
the size 〈s〉 of linear aggregates, i.e. m = 2, on the overall solute
mole fraction x. This requires a model for µ̄s. A simple one is

µ̄s = sµ̄1−RT αo(s−1) . (492)

The quantity−RT αo is a contact free enthalpy for each of the s−1
contacts between neighboring monomers in s-aggregates. With
this we have α = αo(s−1)/s. It is straightforward to work out

〈s〉= ∑
∞
s=1 sxs

∑
∞
s=1 xs

=
1+q
1−q

and x =
∞

∑
s=1

xs = e−αo
q

(1−q)2 , (493)

where q = x1eαo . Solving the left equation for q and inserting the
result into the right equation yields

〈s〉=
√

1+4eαo x . (494)

This tells us that the mean aggregate size increases proportional
to
√

x for sufficiently large 〈s〉. This aggregate growth in the
ideal system is enhanced when the aggregates interact (W. M.
Gelbart and A. Ben-Shaul in Micelles, Membranes, Microemul-
sions, and Monolayers (W. M. Gelbart, A. Ben-Shaul, D. Roux;
Eds.) Springer-Verlag:Heidelberg (1994)).

Theoretical studies of the statistical mechanics of reversibly
aggregating systems can be divided roughly into three groups.
The first mainly comprises the formation of the isolated micelles
and their internal structure at low concentrations (just above the
CMC), so that the interaction of the aggregates can be neglected.
The second comprises the phase theory of more (than two) com-
ponent systems (microemulsions) by means of mostly lattice or
field theoretical models (see e.g. B. Widom, K. A. Dawson, M.
D. Lipkin, In Statistical Physics: Invited lectures from STATPHYS
16; H. E. Stanley, Ed.; North-Holland: Amsterdam, (1986); p.
26.). The third group, which is the subject here, involves the
study of the liquid crystalline behavior of the labile polydisperse
aggregate population at higher solute concentrations by means
of a synthesis of the excluded-volume models discussed above
with phenomenological descriptions of the amphiphilic interac-
tions (cf. M. P. Taylor, J. Herzfeld, J. Phys.: Condens. Matter 5,
2651 (1993)).

In the following we consider the above case of linear rigid ag-
gregates consisting of strung together monomers. A simple ex-
pression for the change in free energy during the transition from
the isotropic to the nematic phase in such a system is given by
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F
V kBT

=
∞

∑
s=1

∫ dΩ

4π
f (s,θ) ln f (s,θ)

+
1
2

∞

∑
s,s′=1

∫ ∫ dΩ

4π

dΩ′

4π
f (s,θ) f (s′,θ ′)bex(s,s′,Ω−Ω

′)

+ f̃ trans/rot + f̃ aggregate . (495)

This is a generalization of Eq. (465). The generalization is that
the population of rods or aggregates is variable polydisperse, i.e.
ρ f (θ)→ ∑

∞
s=1 f (s,θ). Here f (s,θ) is the number of aggregates

consisting of s monomers with orientation θ in the volume V . ρ

is the aggregate number density. The g( f )-term in Eq. (465) is
replaced by the bex-term. As in the Onsager model, the aggre-
gates are absolutely stiff, hard rods, whose interaction is again
only taken into account up to and including the 2nd virial co-
efficient. f̃ trans/rot stands for the translational free energy term,
which in Eq. (465) merely is lnρ − 1, including the equivalent
of µo/(kBT ) accounting for the vibrational and rotational degrees
of freedom. These contributions appear because, unlike in the
case of inert rods, the length distribution of the aggregates in the
isotropic and in the nematic phase is different. Originally, these
terms were considered important to prevent ’catastrophic’ growth
of the aggregates in the nematic phase. It is now known that
this unphysical growth is prevented if the flexibility (T. Odijk J.
Physique 48, 125 (1987); R. Hentschke Liquid Crystals 10, 691
(1991); P. van der Schoot, M. E. Cates Europhysics Letters 25, 515
(1994)) or a short-range soft repulsion (R. Hentschke, J. Herzfeld
J. Chem. Phys. 91, 7308 (1989)) is taken into account in addition
to the hard-body repulsion. The last term is an internal free en-
ergy of the aggregates, the simplest description of which is a neg-
ative temperature-dependent free energy per monomer-monomer
contact −kBT Φ(T ), i.e.

f̃ aggregate =−Φ(T )
∞

∑
n=1

∫ dΩ

4π
f (s,θ)(s−1) (496)

(cf. Eq. 492). If one wishes to be more precise, or if one is dealing
with more complicated aggregates, this expression must of course
be modified accordingly, and Φ(T ) is not only a function of T
but also a function of, for example, the monomer position within
the aggregate and/or the local curvature of the aggregate (or mi-
celle) surface, as well as the surrounding solvent, etc. However,
let’s refrain from a more detailed discussion, because the exact
treatment of these terms in this context is quite subtle.

Equation (495) is solved as soon as the distribution function
f (s,θ) is known. Using the equilibrium condition µs = sµ1, where
µs = ∂ (∆F/V )/∂ f (s,θ)|V,T, f (s′,θ ′) is the chemical potential of an
aggregate of s monomers with orientation θ , it follows that

f (s,θ) =
(

f (1,θ)eΦ−χ(s)/s
)n

e−(Φ−χ(1)) . (497)

The function χ(s) = 2π ∑
∞
s′=1

∫ dΩ′

4π
f (s′,θ ′)bex(s,s′,Ω − Ω′) +

∂ ( f̃ trans/rot + f̃ aggregate)/∂ f (s,θ)|V,T, f (s′,θ ′) is the contribution of

the external interaction as well as the various degrees of free-
dom mentioned above. For general s, Eq. (497) must be solved
numerically. However, if we first assume that χ(s) is negligible
(for the external interaction this is the case for low amphiphile
concentrations), then with the help of the additional condition
φ = b1 ∑

∞
s=1

∫ dΩ

4π
s f (s,θ), where b1 is the monomer volume, we

can easily calculate the mean aggregation number 〈s〉 as a func-
tion of the amphiphile volume fraction φ , i.e.

〈s〉 ∼
(

φeΦ
)1/2

(498)

(cf. Eq. (494).
Analogous to the Onsager model, this model can also be ex-

tended to isotropic-nematic phase behavior of linear aggregates
at higher concentrations, including flexibility of the aggregates
as well as soft interactions. Likewise, possible translationally-
ordered phases can be included as well. Since these calculations
are more complicated than for inert particles, we shall not go into
details. A comprehensive discussion of the different approaches
and an overview of the literature can be found in M. P. Taylor, J.
Herzfeld J. Phys.: Condens. Matter 5, 2651 (1993). Here a single
example must suffice.

Figure 109 illustrates the molecular effects of sickle cell
anaemia. Pauling, Itan and Ingram have shown that in this dis-
ease a genetic defect leads to a faulty amino acid sequence of
the haemoglobin molecule and thus to the formation of a hy-
drophobic ’pocket’. Under certain conditions (low oxygen partial
pressure), this leads to reversible aggregation of the hemoglobin
molecules in the erythrocytes of sickle cell patients. The aggre-
gates formed are stiff rods of approximately 180-240 Å in diam-
eter, whereby the globular monomer has a size of approx. 60
Å. The aggregation and the associated nematic orientation of the
aggregates (see Fig. 109 (bottom)) leads to sickle-shaped defor-
mation of the erythrocytes (see Fig. 109 (middle)), making them
rigid and thus hindering or preventing their capillary flow, i.e.
oxygen transport. In addition, the erythrocyte membrane is often
damaged (see Fig. 109 (bottom)). The theoretical description of
this phenomenon via the osmotic equation of state, in particular
across the isotropic-nematic transition, within the framework of
an excluded volume theory is shown in Fig. 110.

6.4 Polyelectrolytes
• Preliminaries

Polyelectrolytes are water soluble polymers bearing disso-
ciable groups along their contour. An example is poly(sodium
styrene sulfonate) (PSS) shown in Fig. 111. PSS is a synthetic
polyelectrolyte. However, many biological molecules are also
polyelectrolytes. A famous example is DNA shown in Fig. 112.
Polyelectrolytes combine the properties of both electrolytes
(salts) and polymers. The following brief discussion of concepts
important for the understanding of polyelectrolytes is preceded
by an even briefer compilation of important concepts and
quantities in the context of electrolyte solutions.

 1–91 | 83



Fig. 109 Top: Image showing ’donut’-shaped normal red blood cells (size
approximately 10 µm). Middle: Red blood cells of a sickle cell patient
distorted by bundles of aggregated hemoglobin. Bottom: Close-up image
of a burst red blood cell with protruding rod-like aggregates composed
of globular HbS protein. Pictures reproduced from R. E. Dickerson, I.
Geis Hemoglobin Bejamin (1983).

The standard theoretical starting point for the interaction of
charges in an electrolyte solution is the Debye-Hückel theory. In
this theory the potential of a charge q at point~r from the charge
is

φ(~r)≈ q
r

exp[−r/λD] . (499)

You can find the discussion of this formula, including the assump-
tions it involves, in every textbook on physical chemistry and sta-
tistical thermodynamics (e.g. R. Hentschke Thermodynamics (2nd
ed.) Springer:Heidelberg (2022)). The spatial range of this inter-
action is determined by the Debye screening length

λD =

√
kBT

8πe2I
, (500)

where e is the magnitude of the elementary charge and
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Fig. 110 Osmotic pressure vs. concentration for deoxygenated
hemoglobin from R. Hentschke, J. Herzfeld Phys. Rev. A 43, 7019
(1991). Symbols: experimental data for normal hemoglobin (plusses)
and sickle hemoglobin (37°C (circles), 30°C (crosses), and 20°C (dia-
monds)). Dotted line: theoretical result for normal hemoglobin (T =
37°C). Dashed-dotted lines: theoretical fits for highly concentrated de-
oxygenated sickle cell hemoglobin.

Fig. 111 Chemical structure of poly(sodium styrene sulfonate).

I =
1
2 ∑

i
cizi . (501)

is the ionic strength. The index i indicates the different types of
charges present, ci is the number concentration of these charges,
and zi is the charging of type i. For example, in the case of NaCl
in aqueous solution we have Na+ and Cl− ions, i.e. zNa =+1 and
zCl =−1.

But how large is λD? First we note that the system of our cur-
rent units requires the replacement of q and e by e/

√
4πεoεr if

we want to use SI-units. Here εr is the dielectric constant of the
background medium containing the charges, e.g. ions in water
(water: εr = 78.3 at T = 298 K and P = 1 bar). Thus we have

λD = 1.988 ·10−3
√

T εr

I
nm with [T ] = K and [c] = mol/l .(502)

For example, in the case of a 0.1molar aqueous NaCl solution
λD = 0.96 nm.

A related length is the Bjerrum length λB defined via
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Fig. 112 Chemical structure of DNA. Note the proton dissociation in
the phosphate groups.

λB =
e2

kBT
. (503)

λB is the length at which the interaction of two charges of magni-
tude e is equal to the thermal energy kBT . In water at T = 298 K
we find λB ≈ 0.7 nm.

A simple model picture of a polyelectrolyte, albeit without ad-
ditional ions other than the counterions it supplies itself, is that of
a (straight) line charge density of e per unit length l surrounded
by counterions. The charge density is homogeneously distributed
on a cylinder with radius r0. The interaction of a counterion −e at
a distance r from the cylinder axis is −e∆φcyl(r) = 2e(e/l) ln(r/ro).
Assuming that this is the only relevant interaction in the system
and that the counterions are distributed between r0 and a maxi-
mum distance r1 from the central axis, we obtain the configura-
tion free energy (without the 1/N!-factor multiplying the partition
function) per e and l in units of kBT :

βF =− ln
∫ r1

r0

2π r dr exp[−2a ln(r/ro)] (504)

=− ln

(
πr2

0
(
1− (r1/r0)

2−2a)
a−1

)
,

where a≡ λB/l. Figure 113 depicts βF vs. a for r0 = 1 and r1 = 10
(dotted line), 103 (dashed line) and 105 (solid line). Obviously,
if a < 1 or λB < l the counterions and thereby the rod-like
polyelectrolytes favour infinite dilution. For a > 1 or λB > l this
no longer is the case. This region is interpreted in terms of
a counterion condensation occurring (also called Manning
condensation). Even though this is a very much simplified
picture it still provides interesting insight. Nevertheless, we do
not want to dwell on this phenomenon. Instead the interested
reader should consult the following publications: G. S. Manning
The critical onset of counterion condensation: A survey of its
experimental and theoretical basis. Ber. Bunsen. phys. Chem.
100, 909 (1996); G. S. Manning Counterion condensation theory
of attraction between like charges in the absence of multivalent

counterions. Eur. Phys. J. E 34, 132 (2011).
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Fig. 113 βF vs. a for r0 = 1 and r1 = 10 (dotted line), 103 (dashed line)
and 105 (solid line).

• Electrostatic Persistence Length

It appears natural that the ’stiffness’ of a polyelectrolyte should
depend on quantities like λD or λB. This question was addressed
first by J. Skolnick, M. Fixman Electrostatic Persistence Length of
a Wormlike Polyelectrolyte. Macromolecules 10, 944 (1977) and
T. Odijk Polyelectrolytes near the Rod Limit J. Poly. Sci.: Poly-
mer Physics 15, 477 (1977). Here we employ a simple two-
dimensional model for stiff but nevertheless persistent flexible
polyelectrolytes (e.g. DNA) to illustrate the main result. Figure
114 shows two charges q (in units of e) separated by a distance s
along a circular contour. Their direct separation is x. Using s= ϕR
and (x/2)2 +R2 cos2(ϕ/2) = R2 we obtain for small ϕ

s− x≈ Rϕ3

24
. (505)

We want to compare the electrostatic interaction energy of the
two charges in two cases: (i) R = ∞, i.e. the circular contour
becomes a straight line and the distance between the charges is s;
(ii) R is finite but still large, i.e the curvature is small so that (505)
applies, and the distance between the charges is x. The result is

●●

R

x

q q

φ

s

Fig. 114 Two charges q separated by a distance s along a circular
contour.
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q2
(

1
x
− 1

s

)
≈ q2 s− x

s2 ∼ q2s
R2 . (506)

Next we assume a homogenous line density 1/b of charges
along the contour screened by mobile countercharges surround-
ing them. The corresponding total energy difference per charge
over the distance of one Debye screening length λD is

∼ 1
b

∫
λD

0
ds

q2s
R2 ∼

q2λ 2
D

bR2 . (507)

Now we compare this result with the bending energy of a persis-
tent flexible polymer in Eq. (531) of appendix B. Note that R−1 is
the curvature and thus R−2 =(∂~t/∂ s)2. Hence we conclude, based
on Eq. (539) also in appendix B, that the electrostatic bending
stiffness is proportional to λ 2

D and therefore

Pel ∝
λBλ 2

D
b2 (508)

(Odijk obtains the proportionality constant 1/4). Note that this
is merely the electrostatic part of the total persistence length Ptot ,
i.e.

Ptot = P+Pel , (509)

where P is the part of the total persistence length contributed not
due to the above electrostatic repulsion but by other molecular
interactions.

• Forces Between Persistent Flexible Polyectrolytes in Translation-
ally Ordered Phases

Shape fluctuations of macromolecules have a profound effect
on their interations at sufficiently elevated concentrations. Here
we discuss the effect of flexibility, i.e. the effect of shape fluctua-
tions, on the forces in hexagonally ordered DNA bundles. We shall
discover that molecular flexibility leads to an effective increase of
the range of the electrostatic forces.

Figure 115 shows experimental data from Podgornik et al. who
have measured the repulsive force between hexagonally ordered
DNA molecules in NaCl solutions under variable salt concentra-
tion as function of the perpendicular packing distance. Basi-
cally, the repulsive force decreases exponentially in two distinct
regimes. At inter-helical separations less than about 30 Å the salt
concentrations has no discernible effect. This is due mainly to the
so called hydration forces - forces having to do with the struc-
ture of water layers surrounding the helix. These forces tend to
be stronger than the electrostatic forces controlled by the salt con-
centration. This changes at larger distances where a clear concen-
tration dependence can be observed. Here the forces decay faster
when the salt concentration is larger. The question is whether or
not we can construct a theory describing the force behavior in this
large distance regime?

2268 Podgornik and Parsegian Macromolecules, Vol. 23, No. 8, 1990
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Interhelical Spacing (Á)

Figure 3. Failure of a flexible rod model to predict experimen-
tally observed behavior. The data, for DNA in 1 and 0.2 M
NaCl solutions, show two exponential decays and not the (R -

2 -   )~5/3 dependence that can be deduced from an equiva-
lent hard elastic rod picture,  was set equal to 3.14 or 6.7 Á
and a = 1, thereby mimicking the hydration or electrostatic
forces,3 respectively. Cylinder radius a was taken as 10 Á.

Interhelical Spacing (X)

Figure 4. Repulsion between DNA double helices in NaCl solu-
tions of concentrations 0.2, 0.3,0.4,0.8 and 2 M, fitted with the
effective step length l = 40 Á by using eq 20 and the force curve
in the high ionic strength case (1 = 2 M), which clearly displays
the mean-field and the fluctuation-enhanced region. This step
length is very close to the 45-Á coherence length inferred directly
from thermodynamic analysis of the experimental data on forces
in DNA arrays.3 The electrostatic parameters obtained from
the fit via eq 16 to the low-salt region, where only the fluctua-
tion-enhanced interaction potential is seen experimentally, are
displayed in Table I.

The experimental data are for the force per unit length,
f(R), acting between molecules in a hexagonal array. In
the effective tube model, this is equal to the derivative
of interaction free energy per unit length, W/l, with respect
to R. We recognize that only at large values of ionic
strength (I > 0.8 M NaCl) can one measure a force curve
that reflects the action of the same <{>(R) throughout, both
in the “mean-field” and fluctuation-enhanced regions. At
these concentrations electrostatic double-layer forces are

completely screened,3 and <j>(R) is an exponentially vary-
ing hydration force. At lower ionic strengths, the mean-
field part of the measured force curves still corresponds
to these powerful forces that dominate most interac-
tions at <10 Á separation but the fluctuation-enhanced
part of the force curve now reflects underlying electro-
static double-layer forces. The sensible thing to do is
therefore to obtain the value of l from the set of high
salt measurements and then use this value to extract the
parameters describing the electrostatic interaction. This

Table I
Na-DNA Parameters*

/, M XD, A b, A
0.2 6.7 3.3
0.3 5.5 3.8
0.4 4.7 4.6
0.8 3.6 4.2

* Ionic strength /, Debye-Hückel decay length XD, and effective
distance between the charges b for low-salt Na-DNA.

procedure is validated by a thermodynamic analysis show-
ing that the independently fluctuating segment length
does not depend crucially on the ionic strength.3

We begin then by examining data for forces between
DNA double helices in NaCl solutions of greater than
0.8 M ionic strength. Above this concentration, where
there is no sensitivity of forces to ionic strength; one is
apparently observing forces of molecular hydration. One
sees the two decay rates that would be predicted by eq
20. The points at shorter range give the direct potential
4>(R)/l·, those at greater separation, with one-half the ear-
lier decay rate, then provide a clean demonstration of
the square-root term and a value, 40 Á, for the Gaussian
step length. This value is effectively the same as the
thermodynamic estimate of 45 Á for the fluctuating unit
size3 and is close to the corresponding values of Odijk’s
deflection length. From the magnitude of the soft poten-
tial in the range of relevant R, it is also clear that the <"0

term in eq 14 can be safely neglected.
At lower ionic strengths, the electrostatic double-layer

force expected at shorter separations is overwhelmed by
the more powerful hydration forces, but salt concentra-
tion dependent forces do appear at interaxial distances
greater than 30 Á. In this long-range salt concentration
dependent regime, the decay is close to half the expected
Debye length, again showing the behavior expected from
the square root term in eq 20. We use the second term
in eq 19 with / = 40 Á to estimate the coefficient of the
direct force potential <j>(R). Then by eq 16 we turn the
magnitude of the force potential into an effective linear
charge density expressed through the effective distance
b between the charges (cf. Table I). The actual fits to
the data are presented in Figure 3 and clearly show the
mean-field and the fluctuation-enhanced regions at larger
values of R.

The forces measured have thus been described in terms
of a linear charge density, b, for charges residing on the
surface of a cylinder taken at 10-Á radius and computed
from measured forces by the linearized Poisson-
Boltzmann equation. Interested readers can convert the
tabulated b so computed for other radii of charge loca-
tion or other forms of the Poisson-Boltzmann equation.

Discussion

Though our model is deliberately simplified, it still
retains all the essential features of the system revealed
by the experiment.3 These include the independently
fluctuating unit of a size much smaller than the persis-
tence length (s600 Á for native DNA) and the reduction
of the decay rate produced by the action of thermal fluc-
tuations in the shape of the molecule.

Within the framework of our basically phenomenolog-
ical random walk model, it is not possible to derive the
step length from microscopic considerations. We expect,
however, that a more detailed analysis taking into account
the elastic bending energy as well as the actual full form
of the interaction potential, and not only its small fluc-
tuation expansion (cf. eq 6), can provide an independent

Fig. 115 Repulsion between DNA molecules in NaCl solutions. The salt
concentrations are 0.2, 0.3, 0.4 0.8 and 2 M. The lines are fitted according
to the theory outlined in the text. This is Fig. 4 from R. Podgornik,
V. A. Parsegian Molecular Fluctuations in the Packing of Polymeric Liquid
Crystals. Macromolecules 23, 2265 (1990).

The approach of Podgornik and Parsegian is illustrated in Fig.
116. It is assumed that due to the hexagonal packing of the he-
lixes every individual helix is confined to a tube of diameter R,
where R is the mean inter-helical distance. Moreover, every seg-
ment of length bKuhn experiences a potential φ(ρ). In the follow-
ing we use cylindrical coordinates ρ, ϕ and z, where z is measured
along the tube axis. Expanding φ(ρ) around ρ = R yields

φ(ρ) = φ(R)+
1
2

φ
′′(R)x2 , (510)

where x = ρ−R. We shall not discuss the electrostatic interaction
between the DNA helices. Instead we rely on a result obtained by
Podgornik and Parsegian, i.e.

φ(R) = φo
e−κR

κR
. (511)

Here we assume that κR is large. Hence

φ
′′(R)≈ κ

2
φ(R) . (512)

In the case at hand the quantity κ is the inverse Debye length.
All in all this means that we consider the DNA molecule as being
composed of segments of length bKuhn experiencing a harmonic
potential in the radial direction from the tube’s axis. The quanti-
ties xi in Fig. 116 indicate the radial position of segment i relative
to the minimum of the harmonic potential.

In order to find the free energy of the helices in this model, we
employ the self-consistent field approach. As a matter of fact, it is
very convenient to directly use Eq. (69). One may object that this
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Fig. 116 Sketch of a DNA molecule (green) within an effective tube
(cylinder) of radius R created by its neighbors (shown in grey) in a
hexagonal array of DNA helices. Note that R is the mean separation
of the helices. Each DNA segment of length bKuhn is subject to a har-
monic potential φ(ρ) perpendicular to the cylinder axis illustrated by the
paraboloid.

is a differential equation for one- and not three-dimensional poly-
mers or paths in a potential u(x). However, the changes necessary
to upgrade our solution from one to three dimensions are minor
and can be made easily at the end. Notice that the radial positions
xi of the segments, which are for the time being just x-positions
relative to the potential minimum, are analogous to the arrows in
Fig. 21 mapping out a conformation of a one-dimensional poly-
mer. This means that we can use Eq. (69) as it stands and merely
replace u(x) by the second term in Eq. (510), i.e.

(
b2

2
d2

dx2 +µo−β
1
2

κ
2
φ(R)x2

)
ψo(x) = 0 . (513)

Here b = |xi−xi−1|, where we assume that b is the same for every
i. Now we introduce the new variable s via

x =
(

b2

βκ2φ(R)

)1/4

s . (514)

With this substitution we obtain (513) in dimensionless form, i.e.

(
d2

ds2 +w− s2
)

ψ̃o(s) = 0 , (515)

where

µo =
w
2

bκ (βφ(R))1/2 . (516)

Equation (515) describes the one-dimensional quantum oscillator

and for the ground state this means w = 1. The total free energy
of a segment bKuhn of the helix is the sum of φ(R) and kBT µo, i.e.

∆F(R) = φ(R)+ kBT µo = φ(R)+
1
2

kBT bκ

(
φ(R)
kBT

)1/2
. (517)

This is essentially equation (20) in R. Podgornik, V. A. Parsegian
Molecular Fluctuations in the Packing of Polymeric Liquid Crystals.
Macromolecules 23, 2265 (1990). The only difference is a nu-
merical (and for the following discussion unimportant) factor in
the second term, which arises from the aforementioned reduction
of the problem to one-dimension (see below).

But what is the significance of Eq. (517)? The force shown
in Fig. 115 is obtained by differentiating ∆F(R) with respect to
R. However, this will not alter the fact that the decay of the first
term’s contribution to the force is much faster in comparison to
the second term, which is contributed by the shape fluctuations
of the helix. The square root of φ(R) in that term essentially dou-
bles the decay length from κ−1 to 2κ−1! Of course, changing the
salt concentration changes the ionic strength and therefore κ−1.
Hence the different slopes of the force data for large inter-helical
spacing.

Let’s return to the issue of dimension. Podgornik and Parsegian
use the three-dimensional version of Eq. (513). This implies that
the DNA-helixes are three-dimensional random walks. The step
length l (corresponding to our b) is the same in all three direc-
tions. However, it seems to this author that the direction along
the tube is special. In particular b≈ bKuhn

√
〈θ 2〉, where θ(z) is the

angle between the helix orientation and the tube’s axis at point
z along the tube. Since the alignment of the helices is quite pro-
nounced, we expect b� bKuhn, with bKuhn comparable to the per-
sistence length of DNA (about 600 Å). The ’upgrade’ from one- to
two dimensions means that b2/2 in Eq. (513) is replaced by b2/4
and the ground state value of w is not 1 but 2. Using b2/4 and
w = 2 does in fact not change Eq. (517) at all.

The discussion of polyelectrolytes fills books and therefore
it is best to stop at this point. However, readers interested in
learning more about this important class of polymers may want
to start with the following review article: M. Muthukumar 50th
Anniversary Perspective: A Perspective on Polyelectrolyte Solutions
Macromolecules 50, 9528 (2017).

7 Appendix

7.1 A: Phenomenological Models for Viscoelasticity

The Kelvin-Voigt model is only one of several simple combinations
of the basic elements and, in addition, is not applicable in the
full frequency range. Our next model is the so called Maxwell
model (model (b)) in Fig. 50. This model arranges the two basic
elements in series. Its mathematical description is

σ = σG = ση γ = γG + γη . (518)

Using (248) and (249) we obtain
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(b) : σ +
η

G
σ̇ = ηγ̇ . (519)

The same ansatz as before leads to

G′/G =
τ2

Mω2

τ2
Mω2 +1

(520)

G′′/G =
τMω

τ2
Mω2 +1

(521)

tanδ =
1

τMω
, (522)

where τM = η/G. We shall return to this model in our discussion
of the chain models of Rouse and Zimm.

Yet another phenomenological model the Zener model (model
(c) in Fig. 50). The mathematical description of the Zener model
is slightly more complex compared to the Kelvin-Voigt or the
Maxwell model. Now we have

σ = σ1 +σM

σM = σ2 = ση

γ = γ1 = γM

γM = γ2 + γη .

The indices 1 and 2 refer to G1 and G2. Again we employ (248)
and (249), which here leads to

(c) : σ +
η

G2
σ̇ = G1γ +η

(
1+

G1

G2

)
γ̇ . (523)

As before the relation between stress and strain is linear and the
above ansatz (real or complex) yields

G′/G1 =
τ2

2 ω2/θ +1
τ2

2 ω2 +1
(524)

G′′/G2 =
τ2ω

τ2
2 ω2 +1

(525)

tanδ =
1−θ

θ

τ2ω

τ2
2 ω2/θ +1

, (526)

where τ2 = η/G2 and θ = G1/(G1 +G2). The quantity τ2 again
describes a relaxation time. If the instantaneous strain γ(t = 0) =
γo is held constant, i.e. γ̇(t) = 0 for t > 0, then

σ(t) =
(

G1 +G2e−t/τ2
)

γo . (527)

Question: What is the justification for σ(t = 0) = (G1 +G2)γo ?
(The strain occurs instantaneously at t = 0. The dashpot cannot
follow as quickly, i.e. only the G-elements contribute to the an-

swer.).
We briefly want to note that the maximum of tanδ in the Zener

model is at

τ2ωmax =
√

θ (528)

and the attendant value of tanδ (ωmax) is

tanδ |max =
1−θ

2
√

θ
=

1− (τ2ωmax)
2

2τ2ωmax
. (529)

Let’s study the low and high frequency limits of the Eqs. (524)
through (526). The limit of small ω leads to the Kelvin-Voigt
model (with G1 = G). In the opposite limit of large ω we obtain
G′ ≈ G1 +G2, G′′ ≈ G2/(τ2ω), and tanδ ≈ (G2/(G1 +G2))/(τ2ω).
The special case G1 � G2 yields the Maxwell model in the same
limit (with G2 = G). Fig. 117 shows the various results of the
Zener model for G1 = G2 = G. The dashed lines are the lead-
ing contributions in the above two limits. In order to gauge the
value of our simple models we must relate their results to actual
measurements.

Fig. 118 shows such measurements in comparison to the Zener
model. Notice that the values for G1 and G2 follow by fitting
the theoretical storage modulus to the experimental results in
the respective limits at low and high frequencies. The value of
τ2 ≈ 10−7s is obtained by adjusting the inflection point of the the-
oretical storage modulus to the data. Despite its simplicity the
Zener model provides an overall correct qualitative description of
the data.

Before we explore possible improvements of the Zener model,
we should make sure that we do understand why it works the
way it works. After all, the model combines three simple basic
elements, i.e. two springs plus a dashpot, into a reasonable de-
scription of the mechanical properties of a complex system.

Fig. 119 shows a number of alternative combinations of the
basic models, i.e. (a) (Maxwell: M) and (b) (Kelvin-Voigt: KV)
depicted in Fig. 50. If we investigate the mechanical behavior
of the new models, then the upper row behaves very much like
the Maxwell model, i.e. tanδ ∼ ω−1, whereas the lower row be-
haves according to the Kelvin-Voigt model, i.e. tanδ ∼ ω. None
of the models reproduces the maximum of tanδ versus ω. Only
the Zener-Modell (sometimes also called Poynting-Thomson re-
laxation model) and its dual partner, both depicted in Fig. 120, do
yield qualitative agreement with the experiment (The two mod-
els can be converted into one another via GR

1 = GK
1 GK

2 /(G
K
1 +GK

2 ),

GR
2 = GK

2
2
/(GK

1 +GK
2 ) and ηR = (GK

2 /(G
K
1 +GK

2 ))
2ηK . The index R

indicates the relaxation or Zener model, the index K indicates its
dual partner.). Notice that interchanging springs and dash pots in
the two models does not yield useful results or insights.

We can understand our above results as follows. At low
frequencies an increase of tanδ is observed. This means that the
friction element, i.e. the dashpot, must be able to follow the
excitation. This is build into the Kelvin-Voigt model, because the
amplitudes in the two braches are strictly coupled. The decrease
of tanδ at high frequencies, on the other hand, requires the
decoupling of the friction elements from the excitation. This is
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Fig. 117 Results of the Zener model.
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Fig. 118 Dynamic moduli of the Zener model (lines) in compari-
son to measured data (squares: storage modulus; circles: loss modu-
lus) obtained for a highly cross-linked polyisoprene rubber versus strain
frequency (data reproduced with the permission of Continental Reifen
Deutschland). Note that the loss modulus data in this figure are the
same as the ones in Fig. 74. Here the values for G1 and G2 are different
from the values used in Fig. 74 in order to obtain better overall agree-
ment with both moduli.
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Fig. 119 Simple combination models.
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Fig. 120 Top: Zener or Poynting-Thomson relaxation model; bottom:
dual partner.

build into the Maxwell model, where the spring can take over the
strain from the friction element. The Zener model incorporates
both behaviors.

Remark: A parameter we have mentioned is the strain amplitude.
There is no amplitude dependence of the dynamic moduli
predicted by the above models. This is because they are linear.
Most elastomer materials contain large amounts of filler. In the
case of automobile tires the fillers are carbon black and/or silica
nanoparticles. The resulting materials are highly non-linear
and their dynamic moduli are strongly dependent on the strain
amplitude (Payne effect).

7.2 B: Persistence Length from Fluctuation Theory
Note that H in (449) can be expressed as an integral (continuum
limit). To see this note that

(~ti−~ti+1)
2 = 2−2~ti ·~ti+1 . (530)

Hence

H = Ho +
b2J
2

N

∑
i=1

(
~ti−~ti+1

b

)2
c.l.
= Ho +

1
2

bJ
∫ L

0
ds
(

∂~t
∂ s

)2

, (531)

where Ho = −NJ. c.l. means N → ∞, b→ 0 while L = Nb. Note
that bJ is a bending stiffness. The probability of a certain contour
conformation is

p({~t}) ∝ exp

[
−β

∫ L

0
ds

{
λ

L
~t 2(s)+

1
2

bJ
(

∂~t
∂ s

)2
}]

(532)

(β = (kBT )−1). Here λ is a Langrange multiplier due to the con-
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dition

1
L

∫ L

0
ds~t 2(s) = 1 , (533)

which is the global version of the local condition ~t 2(s) = 1.
According to a general result of fluctuation theory (e.g. R.
Hentschke Statistische Mechanik (2004); p. 228 ff)

〈t̂q · t̂−q〉=
d−1
2β

1
λ + L

2 bJ q2
, (534)

where 〈t̂q · t̂−q〉 is the Fourier transform of 〈~t(0) ·~t(s)〉. Note
that d− 1 distinguishes two cases: d = 3 is a polymer in three-
dimensional space and d = 2 is a polymer in two-dimensional
space. In the former case there are two fluctuating angles un-
derlying the local orientation of~t, whereas in the latter case there
is only one (for details see L. D. Landau, E. M. Lifshitz Statistical
Mechanics § 127). Hence

〈~t(0) ·~t(s)〉= L
2π

∫
∞

−∞

〈t̂q · t̂−q〉eiqsdq =
d−1
4β

(
λbJ
2L

)−1
e−s/P ,(535)

where

P =

(
LbJ
2λ

)1/2
. (536)

The Lagrange multiplier follows via 〈~t 2(0)〉= 1, i.e.

λ =
L(d−1)
8β 2bJ

. (537)

The final result is

〈~t(0) ·~t(s)〉= e−s/P (538)

with

P =
2

d−1
bJ

kBT
. (539)

For d = 3 this agrees with Eq. (40) and Eq. (452), respectively!

7.3 C: Teaching and Studying the Material in these Notes
The following listing shows the material in these notes organized
into 24 lectures (1.5 hours each). This should be useful for po-
tential lecturers. In addition, students, who wish to study the
material by themselves, may be benefited by the partitioning of
the course material into more easily digestible increments.

Lecture Content Pages
POLYMER MICROSTRUCTURE,
CLASSIFICATION, AND MASS

L 1 Molecular Microstructure 3 - 6
and Classification,
Molecular Mass

L 2 Flexibility Mechanisms 6 - 11
and Polymer Dimension
EQUILIBRIUM CONFORMATION
OF SINGLE CHAINS

L 3 RIS/Transfer Matrix Approach 11 - 14
L 4 Self-Consistent Field Approach 14 - 16
L 5 Conformation Entropy, 16 - 18

Flory’s Exponent
L 6 The Scaling Concept 18 - 21
L 7 Scattering from Ideal Chains 21 - 24
L 8 Light Scattering and Zimm Plot 24 - 25
L 9 Scattering from Real Chains 26 - 27

THERMODYNAMICS OF BLENDS,
SOLUTIONS, AND NETWORKS

L 10 Lattice Model for Binary 28 - 29
Polymer Mixtures

L 11 Phase Separation in Polymer Mixtures 29 - 32
and Polymers in Solution

L 12 Swelling of Polymer Networks 32 - 35
POLYMER DYNAMICS

L 13 Linear Deformation Mechanics, 35 - 44∗

Ideal Fluids, Phenomenological Models
of the Dynamic Moduli

L 14 Time-Temperature Superposition, 44 - 47
Shear Relaxation Modulus and
Relation to Storage and Loss Modulus

L 15 Single Chain Dynamics: Preliminaries 47 - 49∗∗

(friction, Brownian motion,
equation of motion of the bead-spring
chain with friction)

L 16 Single Chain Dynamics: 49 - 51
Rouse Model – Solution and Results

L 17 Single Chain Dynamics: 51 - 55∗∗∗

Zimm Model – Hydrodynamic
Interactions and Their Effects

L 18 Polymer Entanglement 55 - 57
L 19 The Glass Process 57 - 63

SELECTED TOPICS
L 20 Aspects of Polymer Mechanics 63 - 68
L 21 Filler Effects 68 - 75
L 22 Liquid Crystalline Polymers 75 - 81
L 23 Reversibly Assembling Polymers 81 - 83
L 24 Polyelectrolytes 83 - 87
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(*) : This lecture focusses on the straightforward introduction
of Eqs. (211) and (247) and how they form the building blocks
of phenomenological models of linear viscoelasticity. This means
that most of the content of the two boxes Equations and Concepts
from Isotropic Elasticity and Equations and Concepts from Fluid
Mechanics is omitted and left as a reading assignment (or
perhaps an additional lecture). Based on Eqs. (211) and (247),
the Kelvin-Voigt model is discussed in relation to the damped
harmonic oscillator under the influence of an external periodic
force, since the latter is studied extensively in undergraduate

physics. In addition, the storage and the loss modulus are
introduced.

(**): including Eq. (305)

(***): There are a number of detailed calculations on these
pages. For the better part they should be omitted in class. Instead
one should focus on the main results and the differences between
Zimm and Rouse model.
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