
Molecular Dynamics and Monte Carlo

simulation of Lennard-Jones systems

-a tutorial-

Reinhard Hentschke∗

School of Mathematics and Natural Sciences

Bergische Universität, D-42097 Wuppertal, Germany

-March, 2019-

E-mail: hentschk@uni-wuppertal.de

1

Abstract

This is a brief introduction to Molecular Dynamics and Metropolis Monte Carlo sim-

ulation techniques and their application to simple molecular fluids. The background

material, in particular Statistical Mechanics, is reduced to a minimum. A number of

small exercises and two more extensive simulation projects, thermal conductivity and

gas-liquid phase coexistence, teach the reader how to apply molecular simulations and

how to compare the results to experimental measurements.

In the current version of this tutorial I have modified the thermal conductivity problem

in response to feedback from several students.

Technical preliminaries

Simulation boxes

Imagine 18g of water - roughly 2.6 cm × 2.6 cm × 2.6 cm in terms of volume. How

many molecules does this much water contain? About 6 · 1023. There is no computer

yet that can handle this many molecules. We in fact will deal with somewhere between

100 to 300 molecules. Nevertheless, we have to trick them into ’thinking’ that they are

6 · 1023. This big a system is a bulk system - a system in which the surfaces do not

affect the properties.

The red particles in Fig. 1 are models of real molecules stored in a computer’s

memory. Every particle is the center of a circle with radius rcut. Things outside its

circle a particle does not ’see’ directly. This means that two particles interact directly

only if they are inside each others circles.

The blue particles in Fig. 1 are not real molecules. They are not stored anywhere

on the computer. They have well defined positions, however, because they are periodic

images of the red particles. The periodicity arises because of the central square. The

latter defines a lattice and every lattice cell contains exactly the same particles at the

exact same positions. In some cases the particles are real (red), but in most cases

2

Figure 1: Left: Primary simulation box in the center at the beginning of a simulation
embedded in a lattice of its periodic images. Right: After a certain number of simulation
steps all but one of the real, i.e. red, particles have left the original simulation box. The
original density, if the image, i.e. blue, particles are included in the count, has not changed.

the are merely images of real particles (blue). The volume of the central square, or

(primary) simulation box, determines the (number) density of particles, i.e. molecules.

As long as the range of interaction (circle) is less, ideally much less, than the size of

the simulation box, a particle should not notice the small size of its system. In practice

this is not exactly true and we must expect so called finite size effects.

When we calculate the path of a red particle in space, we do this based on all

interactions with particles inside its interaction radius, rcut, which we call cutoff radius.

These particles can be red or blue! In the right panel of Fig. 1 the last red particle in

the central box interacts with only the blue diamond. The real red diamond, however,

is a long way off. Since we only store the position of real, i.e. red, particles, we must

use the position of the red diamond to determine the distance between the red star in

the central box and the blue diamond in its cutoff radius. This is done, here for the

x-distance, by the following line of computer code:

3

xminij = xij − L Round[xij/L] (1)

The quantity xij is given by xij = xi− xj , where xi is the x- coordinate of the red star

and xj is the x-coordinate of the red diamond. L is the length of the primary simulation

cell in x-direction. Round[a] returns a rounded to the nearest integer. No matter where

the red diamond really is, the magnitude of xminij is the x-distance separating the red

star from the nearest image of the red diamond. Thus, when we calculate the potential

energy of a real particle i in a system, we do this as follows. First we find every particle,

j (6= i), the real j or one of its images, inside the cutoff radius of i using Eq. (1). That

is the condition rcut > rminij , with

(rminij)2 = (xminij)2 + (yminij)2 + (zminij)2 , (2)

must be satisfied. Subsequently we compute the pair-potential energies based on these

distances rminij . Likewise we proceed in the case of forces. Eq. (1) is also known as

minimum image convention. Using the minimum image convention the real particles

are free to move wherever they like, while the density remains constant. The simulation

box mimics a bulk system. One last note. Some simulations require that the density is

variable, i.e. the pressure is constant instead of the volume. We can handle constant

pressure by varying L and still use (1) as described.

Error calculation

There are many types of errors. Some errors are simply mistakes. Others are due

to numerical inaccuracies of the simulation algorithm. Still others have to do with

insufficient equilibration. Here I want to talk about statistical errors.

Every simulation algorithm produces long sequence of numbers. One such sequence

4

may be the x-position of a particle, another one the potential energy or the temperature.

Whatever it is, we call this quantity A and its values Ai. The sample average of A is

Ā =
1

K

K∑
i=1

Ai (3)

and

s2
A = Ā2 − Ā2 . (4)

is the sample variance. Fig. 2 depicts a mock series of data points. After an equilibra-

tion phase, which may look different from the more or less monotonous increase shown

here, the data points finally form a ’plateau’. Only the data in this plateau are used

for analysis.

é

é

é

é

éé

é

é
é

é

é
é
é

é

é

é
é
é

é

é
éé

é
é
é

é

é

é

é

é

éé
éé

éé

é

é

é
é

é

é
é

éé

é

é
é

i

Ai

È

1
È

K

A

Figure 2: Mock series of data points Ai including an initial equilibration phase followed by
equilibrium data. The dashed line separates the data aquired during equilibration from the
data used for analysis. The horizontal line is the equilibrium average Ā.

Using the central limit theorem one can estimate the likelihood that the true average

value of A, i.e. 〈A〉, satisfies

5

Ā− sA√
n
< 〈A〉 < Ā+

sA√
n
. (5)

This likelihood is 68 %. Notice that n is the number of independent values Ai in the

original sample. When you present sample averages computed from simulated data, you

must include the standard error ± sA√
n
. This is done either in the form of an error bar,

when the sample average Ā is a data point in a graph, or, when Ā is a number, in the

form Ā ± sA√
n
. In addition, you should refrain from presenting numerical values using

more decimal places than supported by the error estimate for the respective quantity.

The number of independent values n in your series of stored simulation data can be

determined from the auto-correlation function of A, i.e.

CA(k) =

∑K−k
i=1 (Ai − Ā)(Ai+k − Ā)∑K

i=1(Ai − Ā)2
. (6)

Two examples for CA(k) are shown in Fig. 3. In this particular case t = ∆t k, where

∆t = 0.001 is the timestep in a Molecular Dynamics simulation (cf. below). The two

curves, labeled P and T , are autocorrelation functions for pressure and temperature

obtained in a simulation. Important parameters characterising the simulated system

were the particle number density, ρ = N/V = 0.15, where V is the volume of the

simulation box, the particle number, N = 108, the cutoff radius, rcut = 3, and T = 2.59

(in Lennard-Jones units as explained below). Both auto-correlation functions have

decayed to zero at t ≈ 2, which means k = kc ≈ 2000. This value, i.e. k = kc, beyond

which CA(k) becomes zero -within small fluctuations- can be used to determine n via

n = K/kc . (7)

Notice that in general kc depends on the choice of simulation parameters.

6

The auto-correlation function also allows to spot certain types of systematic errors,

i.e. ’drifts’ in the data. The inset in Fig. 3 shows CT for two independent Molecular

Dynamics simulations of different precision. The CT obtained for the longer timestep,

∆t = 0.01, does not decay to zero. Due to numerical error the temperature does not

fluctuate around a constant value, which gives rise to a non-vanishing correlation.

460 Kapitel X: Mehr zur Analyse von Simulationstrajektorien

24. März 2004

0

0.4

0.8

0.01 0.1 1 10 100

C(t)

t

T

P

0

0.2

0.4

0.01 0.1 1 10 100

C
T
(t)

t

∆ t=0.001

∆ t=0.01

1

10

100

0.0001 0.001 0.01 0.1 1

s

1/Blocklänge

T

P

Abbildung X.7 Berechnung von C tA() (oben) und s (unten) für die Größen T* und P*

aus einer NVE-Simulation (N = 108, rcut
* = 3, ρ* .= 0 15, ∆t* .= 0 001 und T* .= 2 59).

X.d) Literatur

[1] D. L. Goodstein "States of Matter" Dover: New York, 1985

[2]"Physical & Chemical Tables" C. H. MacGillavry; G. D. Rieck, Ed.; International Tables

for X-Ray Crystallography III; D. Reidel Publishing Company: Dordrecht, 1983.

Figure 3: Examples of auto-correlation functions obtained for pressure and temperature data
extracted from Molecular Dynamics simulations of a Lennard-Jones gas.

• Exercise - standard error: Give a justification for (5). Why is the probability that

the true average is inside these limits 0.68?

• Exercise - autocorrelation function: Give a justification for the statement ’The

value of k = kc beyond which CA(k) becomes zero -within small oscillations- can be

used to determine n.’

7

Lennard-Jones interactions

This tutorial focusses on simple gases and liquids. ’Simple’ means that the interactions

between the molecules, or atoms in the case of noble gases, may be described via simple

potential functions like the Lennard-Jones (LJ) potential:

u(r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]
. (8)

1.0 1.5 2.0 2.5 3.0 3.5
r�Σ

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5
u�Ε , Σf�Ε

Figure 4: Lennard-Jones potential, u, (solid line) and the magnitude of its force, f , (dashed
line).

Here r is the minimum image center-to-center separation of two particles, i.e. rminij as

explained above. When the two particles are far apart, they attract each other until

their distance is less than 21/6σ, where the force f is zero. For smaller separation the

interaction force is repulsive. The −r−6-attraction in the potential is the leading term

of the quantum mechanical interaction between small neutral molecules, i.e. neutral

molecules universally attract each other at large distances. The r−12-repulsion is a

convenient description of the excluded volume interaction between molecules. However,

there is no deeper justification for its mathematical form.

The two parameters ε and σ are a typical energy and a characteristic linear di-

mension of the molecules, respectively. Here we deal with pure systems only, i.e. all

8

molecules in our simulations do have the same ε and σ. This makes it convenient and

useful to measure all energies in units of ε and all lengths in units of σ. Thus, we do

not use (8) as it stands but rather

u(r) = 4
[
r−12 − r−6

]
, (9)

i.e. your programs should never contain ε and/or σ explicitly!

At first glance this may seem as if we study just one very particular system. This

is correct, but there is what is called the law of corresponding states. This law is not

a strict law. It rather is an approximation - albeit a very good one for many fluids

of small molecules. It means that if we have done all simulations in these units, the

LJ units which we discuss in more detail below, then we can, if we know ε and σ for

a particular molecule, map our LJ results onto the real system. In particular, this

allows the comparison of the simulation results to corresponding experiments for this

molecular system.

In the above section on simulation boxes we had introduced the cutoff radius, rcut.

Interactions of molecules beyond rcut will be neglected. Looking at Fig. 4 this seems to

be reasonable if for instance rcut/σ ≥ 3. But how much of the total (potential) energy

do we actually throw away? The answer is

Ulrc =
∑

i<j,rminij >rcut

uij ≈
N(N − 1)

2

1

V

∫ ∞
rcut

4πr2dru(r) ≈ −8π

3
ρσ3ε

(
σ

rcut

)3

N (10)

(cf. Ref.3 (section IV.a)). You can understand this formula better if you set u(r) = ε,

i.e. all particle pairs have the same potential energy independent of their separation.

In this case the integral is equal to V , except for a small hole with the radius rcut,

which cancels the factor 1/V . The remaining number, N(N − 1)/2, is the number

of distinct pairs of particles. Finally, u(r)(6= ε) accounts for the distance dependence

9

of the interaction between pairs. This so called long range correction should be small

compared to the total potential energy in your system. In LJ systems rcut/σ = 3 usually

meets this condition.

If necessary, as for instance in Monte Carlo simulations involving moves which

change the density, you can add Ulrc to your potential energy as a correction. However

be careful. You may think that if this is always possible, you can make rcut really small,

e.g. rcut/σ ≈ 1, and thereby reduce the computational effort. This is not correct! The

first ≈ in Eq.(10) means that we can neglect structural ordering beyond rcut. Structural

ordering is caused by every particle’s presence, because it imposes a distance constrain

on its neighbors and, depending on density, on the next-nearest neighbors as well. A

pictorial illustration of these spatial correlation is shown in Fig. 5. In order for Eq.(10)

to work, rcut must be sufficiently large, i.e. the presence of the central particle from,

from which we measure rcut, does no longer influence the positions of particles beyond

rcut. This can be checked by computing the so called radial pair-correlation function

(cf. Eq. X.14 on page 445 in Ref.3).

• Exercise - long range correction: Cutting off the interaction between particles

also means setting their interaction force equal to zero. Does it make sense to also

introduce a long range correction to the force on a particle? Explain your answer!

Notice that our approach amounts to approximate the interactions between particles

in a simulation by pairwise interactions. The total interaction energy for instance is

U =
∑

i<j,rminij ≤rcut

uij + Ulrc . (11)

Likewise the total force on any particle i is given by

10

Figure 5: Relation between inter-particle potential and the ordering imposed by the shaded
particle on its neighborhood. The validity of Eq. (10) is based on the assumption that the
density variations beyond rcut are negligible. Notice that rcut/σ = 3 essentially means that
this should be true after the third neighbor shell.

11

~Fi =
∑

j(6=i),rminij ≤rcut

~fij . (12)

Comparing to the real world

All our simulations are carried out on the basis of Eq. (9). For example, in one of

the projects you will use Monte Carlo simulations to find the gas-liquid critical point

of a particle system. Let TLJ,c be your result for the critical temperature and ρLJ,c

your result for the critical density. A good place to look up corresponding numbers

for real fluids like Argon or Methane is Ref.4 Let’s assume we look up the critical

parameters for Methane, i.e. TCH4,c and ρCH4,c. How are these two numbers related

to your simulation results? Notice that kBTCH4,c is a thermal energy. kB of course is

Boltzmann’s constant. Because in our simulation energy is in units of ε, we should also

measure this energy in ε. Thus

kBTCH4,c

ε
= TLJ,c . (13)

With some background in Statistical Mechanics, we can see this even more clearly.

Consider the Boltzmann factor exp[−U/(kBT)]. With U/ε = ULJ we have

exp

[
− U

kBT

]
= exp

[
− ULJ
kBT/ε

]
= exp

[
−ULJ
TLJ

]
. (14)

The number density ρCH4,c has the unit [length−3]. Because we measure length in units

of σ, we find

σ3ρCH4,c = ρLJ,c . (15)

12

This means that if we know ε and σ for methane, i.e. εCH4 and σCH4 , then we can use

Eq. (13 and (14) to compute TCH4,c and ρCH4,c from our simulation results TLJ,c and

ρLJ,c. If we do not yet know εCH4 and σCH4 , then we can use the same equations to

compute them based on the experimental values for TCH4,c and ρCH4,c from Ref.4

Ref.4 also provides the critical pressure of Methane, PCH4,c. How does the equation

relating this pressure to the critical pressure obtained in the simulation, PLJ,c look like?

The game is always the same. The LJ-quantities in our simulation are dimensionless.

Because pressure has the dimension [energy/volume], we have

σ3

ε
PCH4,c = PLJ,c . (16)

In the next section we discuss Molecular Dynamics simulations. Basically, we solve

Newton’s equation of motion for every particle i in the system:

m
d2~ri
dt2

= ~Fi . (17)

Here m is the mass of the particles. We can write the same equation in a dimensionless

form, which we then can implement on the computer:

mσ

τ2

d2~rLJ,i
dt2LJ

=
ε

σ
~FLJ,i . (18)

Setting

τ =

√
mσ2

ε
(19)

we find the desired equation of motion

13

d2~rLJ,i
dt2LJ

= ~FLJ,i . (20)

The quantity τ , as defined by Eq. (19), is the LJ unit of time in our simulations.

In order to get a feeling for τ , we again consider the methane molecule. Its mass is

mCH4 = 16 amu. Based on the critical point data we find σCH4 ≈ 3.7 Å and εCH4/kB ≈

141 K. This yields τCH4 ≈ 1.4 · 10−12 s! During this time a methane molecule in a

gas, whose temperature is T = 300 K, travels the average distance
√
kBT/mCH4τCH4

≈ σCH4 . Notice that the square root is the thermal velocity. During a collision of two

methane molecules, we must calculate the forces between them in steps much smaller

than τCH4 . This is because the potential energy, and thus the force of interaction, may

be very different even when the inter molecular distance changes by only a fraction

of σ (cf. Fig. 4). In practice a save timestep in a MD simulation of a LJ system

is roughly 0.001τ . Thus, we not only have few particles in our simulation boxes, we

can follow their dynamics only for a very brief time interval by macroscopic standards.

Analogously, the corresponding maximum translation of a molecule during a MC step

should be much less than σ.

Table 1: Conversion to and from LJ systems

U/ε ULJ
kBT/ε TLJ
σ3ρ ρLJ
σF/ε FLJ
t/τ tLJ

From now on we no longer use the index LJ to indicate (dimensionless) LJ quantities.

Unless explicitly stated otherwise all quantities in the remainder of this tutorial are LJ

quantities!

14

Molecular Dynamics simulations

Theoretical background

In a MD simulation we numerically solve Newton‘s equations of motion for a many-

particle system. Particles may be atoms or molecules. This is remarkable, because we

have learned that this scale is governed by quantum mechanics.

We are dealing with gases and liquids, for which classical mechanics works quite

well under the condition

ρ−1/3 � ΛT (21)

(cf. section 5.2 in Ref.5). Here ρ = N/V is the number density and ΛT =
√
h2/(2πmkBT),

where h is Planck‘s constant, m is the particle mass, kB is Boltzmann‘s constant, is the

thermal wavelength. Notice that Eq. (21) is one of the exceptions from our above rule

regarding LJ quantities. Notice also that ΛT ≈ 17.5Å/
√
mT , where we use atomic mass

units and Kelvin for the temperature. For instance, for Methane we have mCH4 = 16

amu and if T = 300 K and thus ΛT ≈ 0.25 Å. The average center of mass separation,

i.e. ρ−1/3, between methane molecules at the critical point is ≈ 5.5 Å. This means that

in the case of methane the above condition is satisfied.

The result of a MD simulation is the so called trajectory, i.e. file containing the

particle coordinates, qi, and momenta, pi, collected over k = 1 to K timesteps, ∆t:

{qi(tk), pi(tk)}3N,Ki=1,k=1 . (22)

With this information we can estimate the (time) average of any quantity A, i.e.

〈A〉 = lim
t→∞

1

t

∫ t

0
dt′A({q(t), p(t)}, t) , (23)

15

which may depend on either the coordinates or the momenta or on both (cf. Eq. (3)).

How it‘s done

A simple integration algorithm for Eq. (20) can be constructed as follows. We start

with the series expansions of the position vector of particle i, ~ri(t), and its velocity,

~vi(t):

~ri(t+ ∆t) = ~ri(t) + ∆t~vi(t) +
1

2
∆t2 ~Fi(t) +O(∆t3) (24)

~vi(t+
∆t

2
) = ~vi(t) +

∆t

2
~Fi(t) +O(∆t2) (25)

~vi(t+ ∆t) = ~vi(t+
∆t

2
) +

∆t

2
~Fi(t+

∆t

2
)︸ ︷︷ ︸

=~Fi(t+∆t)+O(∆t)

+O(∆t2) . (26)

Adding the last two equations, we obtain the final algorithm:

~ri(t+ ∆t) ≈ ~ri(t) + ∆t~vi(t) +
1

2
∆t2 ~Fi(t) (27)

~vi(t+ ∆t) ≈ ~vi(t) +
∆t

2

(
~Fi(t+ ∆t) + ~Fi(t)

)
. (28)

The first line advances the position, we shall call its implementation MOVER, whereas

the second line advances the velocity, we shall call its implementation MOVEV. By

repeating MOVER and MOVEV we are able to collect the system‘s trajectory. The

entries in our trajectory list are separated by the timestep ∆t. Large ∆t allow to

follow the system’s dynamic over a longer time. However, a large ∆t also means a large

numerical error (cf. Eqs. (24) to (26)). Thus, the actual timestep is a compromise,

allowing a long trajectory with ’acceptable’ error. Usually it is a good idea to vary

the timestep and compare the attendant simulation results. A reasonable timestep for

LJ-simulations is ∆t = 0.001 (cf.above).

Notice that we need one force evaluation per timestep ∆t only. The x-component

16

of the force is given by

Fi,x = −
N∑

j(6=i)=1

d

dxi
uij =

N∑
j(6=i)=1

fij,x . (29)

A straightforward derivative yields

fij,x = 24
[
2rminij

−13 − rminij
−7
] xminij

rminij

. (30)

Notice that this is the x-component of the force on particle i exerted by the real particle

j or its nearest image (The force curve in Fig. 4 is 24
[
2r−13 − r−7

]
). If for instance

particle i is located at the origin and j (real or image) is far away along the positive

x-axis, then fij,x is positive, i.e. particle i is pulled towards j. In order to work out the

other two components of the force we merely replace x by y and z.

NVE MD code

The core of an MD program looks like this:

Main

. . . generate initial configuration . . .

FORCE (k=1)

Do k=2, NSTEP

MOVER(k-1)

FORCE(k)

MOVEV(k-1)

End k

. . . output . . .

17

The index k is the timestep index. The program integrates the equations of motion for

NSTEP timesteps. The three subroutines FORCE, MOVER, and MOVEV do this:

FORCE(k)

Do i=1, N-1

Do j=i+1, N

If rminij < rcut Then

Fi = +fij

Fj = +− fij
(U = +uij)

End j

End i

MOV ER(k)

Do i=1, N

ri(k + 1) = ri(k) + ∆tvi(k) + 1
2∆t2Fi(k)

End i

MOV EV (k)

Do i=1, N

vi(k + 1) = ri(k) + 1
2∆t

(
Fi(k + 1) + Fi(k)

)
End i

Notice that = + means that the quantity on the left is incremented by the quantity

on the right. Notice also that the above is a shorthand notation omitting vectors. MD

18

does not use the potential directly, this is why the calculation of the total potential

energy U is optional. An example program set up according to this schema is included

in the Appendix.

• Exercise - FORCE for N = 4: By going through the FORCE routine step by

step (pretending N = 4 and rcut =∞) write down the force on each particle for every

distinct pair i, j as a sum over pair-forces fij .

The line . . . generate initial configuration . . . requires some discussion. Initially

the particles should be placed on the nodes of a (cubic) lattice and according to the

required density. This is superior to random placement, because the latter may create

overlapping particles or close contacts. After the random assignment of the initial

velocities, it may be necessary to reset the center of mass velocity,

~vCM =
1

N

N∑
i=1

~vi , (31)

to zero. This is done in the single loop

Do i=1, N

vi = vi − vCM
End i

Otherwise the unphysical translation of the center of mass can cause problems, e.g. a

wrong temperature.

Adjusting temperature

The particle system modelled here has been supplied with a certain amount of energy

in the program part called . . . generate initial configuration The particles have

random initial velocities and due to their initial positions also an attendant potential

19

energy. The total energy, i.e. E = Ekinetic + U , remains constant (sidestepping the

issue of numerical errors). We therefore model what is called an NVE system, i.e. the

particle number, N , the volume, V , and the total energy, E, are constant.

The system will undergo a transient period called equilibration already mentioned.

Afterwards the instantaneous temperature,

T (k) =
1

3N

N∑
i=1

vi(k)2 , (32)

oscillates around a constant average value T̄ , as shown in the last figure in the appendix.

This again is an estimate of the temperature in the system (cf. (5)). Notice that the

above equation is based on Ekinetic(k) = 3
2NT (k), which follows from the generalized

equipartition theorem (e.g., Ref.2).

Thus far the average temperature in the simulation is difficult to adjust to a par-

ticular value. A simple method for temperature adjustment is the heat-flux approach.

Assume that the heat flux, JQ, leads to the following change of the instantaneous kinetic

energy between timesteps k and k + 1:

JQ =
∆Q

∆t
=

1

∆t

N∑
i=1

1

2
v2
i (k)(λ2 − 1) =

1

∆t

3

2
NT (k)(λ2 − 1) . (33)

This ∆Q corresponds to the velocity rescaling

vi(k)→ λvi(k) (34)

after every timestep and for every particle. λ is slightly larger or smaller than one,

depending on whether heat is flowing into or leaving the system.

If JQ depends linearly on the difference between the instantaneous temperature,

T (k), and the target temperature, TB, i.e.

20

JQ = αT (TB − T (k)) , (35)

where αT is a constant, then the combination of (33) and (35) yields

λ =

√
1 +

2∆t

τT

(
TB
T (k)

− 1

)
≈ 1 +

∆t

τT

(
TB
T (k)

− 1

)
. (36)

Here τ−1
T = αT /(3N) is another constant. ∆t/τT should be small, so that the contin-

uous rescaling of the velocities (34) leads to a gradual approach of T (k) towards TB

(More details can be found in section III of Ref.3 In particular it is shown that τT is a

typical relaxation time needed to adjust the current temperature to the value TB).

• Exercise - temperature adjustment in MD: Recreate the NVE MD program

in the appendix. Introduce the above temperature rescaling and show a plot of T (t)

vs. time t, which illustrates the approach of TB = 4 from a different equilibrium

temperature To ≈ 2. Fit the function

T (t) = TB − (TB − To) exp[−2t/τT,fit] , (37)

to your data, where τT,fit is an adjustable parameter. Compare τT,fit to τT used in

your simulation.

A practical example: the coefficient of thermal con-

ductivity

The diffusive heat flux through a wall of area A and thickness d is given by

21

dQ

dt
= λTC

A

d
∆T . (38)

The quantity ∆T is the temperature difference on the two sides of the wall and λTC is

the coefficients of thermal conductivity. When the wall material is ‘dry air‘ (insulation

material is mainly dry air), then λTC ≈ 0.03 W/(m K) in MKSA units. If the wall is

copper, however, then λTC ≈ 400 W/(m K).

In a particle simulation you can calculate λTC via

λTC =
V

3T 2

∫ ∞
0

dt〈 ~J(0) · ~J(t)〉 , (39)

where V is the volume of the simulation box. The quantity 〈 ~J(0) · ~J(t)〉 is an auto-

correlation function (cf. Eq. (6)). The definition of the diffusive heat current, ~J(t),

is

~J(t) =
1

V

N∑
i=1

[
~vi(t)δei(t) +

1

2

N∑
j(6=i)=1

~rij(~fij · ~vi)
]
, (40)

where δei(t) = ei(t) − ē(t) is the total energy (kinetic plus potential) of particle i, i.e.

ei(t) = 1
2v

2
i (t) + Ui(t), minus the average energy per particle in the system, i.e. ē(t).

A derivation of Eq. (39) can be found in Ref.6 Two examples showing 〈 ~J(0) · ~J(t)〉 are

depicted in Fig. 6 (you will calculate these auto-correlation functions yourself in the

project outlined below). Notice that the auto-correlation function is calculated via

〈 ~J(0) · ~J(t)〉 ≈ 1

K − k
K−k∑
i=1

~Ji · ~Ji+k , (41)

where t = ∆t k. For large k, i.e. when k is not too different from K, the number of

22

terms in the average becomes small, which enhances the scatter. The integral in Eq.

(39) may be approximated by the sum over all values of the auto-correlation function

multiplied by ∆t. Fig. 7 shows the result based on the left auto-correlation function in

the previous figure. Notice that ∆t kmax is the upper limit of the integral in Eq. (39).

The auto-correlation function has decayed after about one LJ time unit corresponding

to kmax = 1000. If kmax is increased beyond this value λTC(kmax) remains constant

within fluctuations. In the case of the right auto-correlation function depicted in Fig.

6 it is harder to determine λTC . This is because the auto-correlation function decays

much more slowly. What used to be a narrow peak at about t = 0.1 now is a plateau-

like shoulder persisting out to large t. In fact, there are thermodynamic conditions for

which the decay of the auto-correlation function is so slow (long-time-tail), that with

the methods at our present disposal we cannot determine λTC at all!

Question: Fig. 7 looks very much like the ’mock series of data points’ in Fig. 2.

Can we apply the method discussed above to determine the standard error of λTC?

What are the two main conceptual differences between the figures?

10−3 10−2 10−1 100 101

t/LJ

0.0

0.2

0.4

0.6

0.8

1.0

〈~ J
(0
)
~ J
(t
)〉
/
~ J
(0
)
~ J
(0
)

T = 1.39, ρ = 0.484

10−3 10−2 10−1 100 101

t/LJ

0.0

0.2

0.4

0.6

0.8

1.0

〈~ J
(0
)
~ J
(t
)〉
/
~ J
(0
)
~ J
(0
)

T = 1.39, ρ = 0.0186

Figure 6: The two JJ auto-correlation functions corresponding to the thermodynamic con-
ditions specified in table 2.

.

• Project - thermal conductivity: Table 2 lists two selected values for λTC at

different conditions for Argon. You should try to obtain corresponding theoretical

values from your MD program. You need to look up the critical point data for

23

Figure 7: λTC based on the left auto-correlation function in the previous figure. Notice that
∆t kmax is the upper limit of the integral in Eq. (39).

.

Argon to convert the units as discussed above (e.g. Ref.4). Assume that in the

LJ system ρc = 0.31 and Tc = 1.32 (You are supposed to check this in another

exercise below. For the moment you may use these values.). Make sure that you

understand how to convert the data in the table to LJ units - do this before you proceed!

Hints:

(a) You can use the MD program in the appendix together with the extension that

adjusts the temperature. After the temperature has reached the desired value, you

should switch to a large τT (≈ 1000) in order to minimize perturbation of your system.

In essence you want to be as close to NVE as possible.

(b) In principle you can store all quantities needed to calculate ~J(t) according to

Eq. (40) in a file. When the MD has finished, you analyse this file. In praxis, however,

this is not feasible, because the double sum ~JF ≡
∑N

i=1

∑N
j(6=i)=1 ~rij(

~fij · ~vi) requires

all pairwise forces to be stored at every timestep. Thus you better do this calculation

’on the fly’, i.e. while you do the actual MD simulation. The following subroutine in

addition to FORCE is useful:

24

JF (k)

Do i=1, N-1

Do j=i+1, N

fvi = fij,xvi,x + fij,yvi,y + fij,zvi,z

fvj = fij,xvj,x + fij,yvj,y + fij,zvj,z

JFx = +xminij (fvi+ fvj)

JFy = +yminij (fvi+ fvj)

JFz = +zminij (fvi+ fvj)

End j

End i

Notice that all quantities used here are computed at timestep k, i.e. this subroutine

should be inserted following MOVEV(k-1) in the code on page 17. Before advancing

the timestep, you are now ready to write the coordinates, xi(k), yi(k), zi(k), the

attendant velocity components, the potential energy of particle i, Ui(k), as well as

the components JFx(k), JFy(k), JFz(k) to a file for later analysis - which means the

calculation of the auto-correlation function as well as λTC . The necessary calculation

of Ui(k) can be integrated into FORCE(k) analogous to the calculations of Fi and Fj

(notice: uij = uji whereas fij = −fji).

(c) The sample average of the energy per particle, ē, should look like this ē =

1
KN

∑
k

∑
i ei(k), i.e. include all particles at every timestep.

25

Table 2: Experimental values of λTC at two different conditions for Argon from Ref.4 (6-22
to 6-23). Notice that the pressures provided here are not needed in the simulation.

T [K] P [MPa] ρ [mol/L] λ
(exp)
TC [10−3 W/(mK)]

160 1.0 0.799 11.1
160 10 20.816 52.8

Monte Carlo Simulation

Theoretical backround

The Molecular Dynamics technique produces system trajectories (22), whereas the

Monte Carlo technique produces system configurations

{qi(k)}3N,Ki=1,k=1 . (42)

Time does no longer appear. The index k refers to the kth step of the MC algorithm.

Specifically, there is no connection between qi(tk) and qi(k). Likewise, K is generally

different in MD and MC.

The list of configurations can be used to calculate sample averages of any quan-

tity which solely depends on the generalized coordinates qi. An example is the total

potential energy U :

Ū =
1

K

K∑
k=1

U(k) . (43)

The calculation of statistical errors and correlation functions is analogous to Molecular

Dynamics. Here we merely replace ’timestep’ by ’MC step’ and ’trajectory’ by ’config-

uration list’. The difference is that the decay of correlations is physically meaningful

in MD. In fact, we use them to calculate transport coefficient, which we cannot do on

the basis of MC simulations.

26

Depending on how we set up the MC algorithm we can calculate averages in differ-

ent ensembles. For instance, if the number of particles, N , the volume of the simulated

system, V , and the temperature in the system, T , are held constant, then we call this

a NVT-ensemble. Depending on the problem at hand, other ensembles, i.e. other ther-

modynamic quantities are held constant, may be better for a specific purpose.

The central part of every so called Metropolis MC algorithm consists of the following

two items:

1. Generate a new random system configuration. This should be based on a random

change, called move, of the previous configuration in the list. A small random

displacement of a randomly selected particle is an example.

2. Evaluate the Metropolis criterion. If the criterion is true then add the new config-

uration to the list (42). If the criterion is false then add the previous configuration,

already in the list, once again to the list. Then goto 1 and continue until k = K.

The Metropolis criterion is simply

min
(

1,
pnew
pold

)
≥ RND(0, 1) . (44)

min(a, b) returns the smaller of the two numbers a and b and RND(0, 1) is a random

number on (0,1). The quantity p is the statistical probability of the system configu-

ration; pnew refers two the new configuration and pold refers to the last configuration

stored in the list (42).

There are two questions at this point. (a) How does one find the right p for the

problem at hand? (b) How does one know whether or not the above two-step algorithm

really works?

27

Let us focus on question (b) first. In order to show that the algorithm indeed works,

it is best to reduce the number of possible system configurations. Hundreds of particles

in a simulation box may be arranged in almost infinitely many configurations. In this

case it is hard to follow what the algorithm really does. It is best to construct an

example with say only four possible configurations called 1, 2, 3 and 4.

The following is a list of these configurations analogous to (42):

12123412123341443232 . (45)

Step 1 in our MC algorithm would be

1. Randomly select one of the three numbers −1, 0,+1 and add this number to the

last configuration in the above list. In order to limit our configuration space to 1,

2, 3, and 4 do the following. If the new number (or configuration) is 0 then use

4 instead. If the new number (or configuration) is 5 then use 1 instead. This is

quite analogous to particle simulations with periodic boundaries.

Repeating this infinitely many times yields a configuration list in which 1, 2, 3, and 4

appear equally often, i.e. p(1) = p(2) = p(3) = p(4). In this case p(1) = p(2) = p(3) =

p(4) = 1/4. The Metropolis criterion does not do anything and can be omitted.

However, let us make up a different set of probabilities. For instance, p(1) = p(3)

and p(2) = p(4) but p(2) = 2p(1). This means that we want the even numbers to ap-

pear twice as often on average compared to the odd numbers. The example is so easy

that we can work out the probabilities right away: p(1) = 1/6, p(2) = 2/6, p(3) = 1/6,

and p(4) = 2/6. The following program code in Mathematica is an implementation of

Metropolis MC for this case:

"Test of Metropolis MC";"Test of Metropolis MC";"Test of Metropolis MC";

"this list counts the occurrences of the four numbers";h = {0, 0, 0, 0};"this list counts the occurrences of the four numbers";h = {0, 0, 0, 0};"this list counts the occurrences of the four numbers";h = {0, 0, 0, 0};

28

"target probability distribution"; p =
{

1
6 ,

2
6 ,

1
6 ,

2
6

}
;"target probability distribution"; p =

{
1
6 ,

2
6 ,

1
6 ,

2
6

}
;"target probability distribution"; p =

{
1
6 ,

2
6 ,

1
6 ,

2
6

}
;

"max. number of MC steps";K = 10000;"max. number of MC steps";K = 10000;"max. number of MC steps";K = 10000;

"initial configuration"; j = RandomInteger[{1, 2}];"initial configuration"; j = RandomInteger[{1, 2}];"initial configuration"; j = RandomInteger[{1, 2}];

jold = j;jold = j;jold = j;

Do[j+=RandomInteger[{−1, 1}]; If[j == 0, j = 4]; If[j == 5, j = 1];Do[j+=RandomInteger[{−1, 1}]; If[j == 0, j = 4]; If[j == 5, j = 1];Do[j+=RandomInteger[{−1, 1}]; If[j == 0, j = 4]; If[j == 5, j = 1];

If
[
Min

[
1, p[[j]]

p[[jold]]

]
≥ RandomReal[], {h[[j]]+=1, jold = j}, {h[[jold]]+=1, j = jold}

]
,If

[
Min

[
1, p[[j]]

p[[jold]]

]
≥ RandomReal[], {h[[j]]+=1, jold = j}, {h[[jold]]+=1, j = jold}

]
,If

[
Min

[
1, p[[j]]

p[[jold]]

]
≥ RandomReal[], {h[[j]]+=1, jold = j}, {h[[jold]]+=1, j = jold}

]
,

{k, 1,K}];{k, 1,K}];{k, 1,K}];

Print
[
N
[
h
K

]]
Print

[
N
[
h
K

]]
Print

[
N
[
h
K

]]

{0.1641, 0.3406, 0.1655, 0.3298}

The list at the end shows the relative frequencies of 1, 2, 3, and 4 in a series of

length 10000 generated by Metropolis MC. The exact result would have been {0.16666..,

0.33333.., 0.16666.., 0.33333..}. We can improve the agreement by simply generating a

(much) longer configuration list. It is important to note that the Metropolis criterion

uses probability ratios, because it is much harder and mostly impossible to calculate

the full normalized probabilities in particle simulations.

A much more detailed discussion of this example and a description of how Metropolis

works in this case can be found in Ref.1 (chapter 6) or Ref.2 (chapter 7).

• Exercise - biased sampling and faulty Metropolis criterion: Repeat the above

Test of Metropolis MC with the following modification:

(a) Instead of ...if the new number (or configuration) is 0 then use 4... use ...if

the new number (or configuration) is 0 then use 2.... This replaces one of the periodic

boundaries by a reflective boundary. What is your result after 106 MC steps?

(b) Instead of...

...if the Metropolis criterion is true then add the new configuration to the configuration

list. If the criterion is false then add the previous configuration, already in the list,

once again to the list...

29

...use...

...if the Metropolis criterion is true then add the new configuration to the configuration

list. If the criterion is false then add nothing to the configuration list...

... What is your result after 106 MC steps?

• Exercise - random number generator test: Monte Carlo simulations require vast

quantities of independent random numbers. In order to avoid simulation errors due to

correlated random numbers you must test your random number generator. A simple but

nonetheless good test is the following. Generate a sequence of 2× 107 random numbers

ξ ∈ (−1, 1). Produce a x-y-point plot of subsequent pairs, i.e. . . . , (x = ξi, y = ξi+1),

(x = ξi+2, y = ξi+3), . . . , extracted from this series. The result should by an almost

uniformly shaded square without a discernible systematic pattern.

Now we return to the first question, i.e. question (a). How does one find the proper

p for simulation boxes containing Lennard-Jones particle systems? We start with the

famous formula

S = ln Ω , (46)

relating the entropy, S, to the number of microstates, Ω, in the universe. A microstate

describes a distinct and spontaneously possible ’arrangement’ of all things.

If I decide to fix the value of some quantity X inside a small corner of the universe,

a system, to the value x, then this imposes a constraint. The latter reduces Ω and thus

S. By constraining X to some value, I rule out certain arrangements of things, i.e.

microstates, violating the constraint. The attendant entropy reduction is

∆S = ln Ω′ − ln Ω . (47)

30

Here Ω′ is the number of possible microstates in the universe under the condition that

X in the system is x. In other words, the probability that the universe spontaneously

and without my interference decides to realise x inside the system is

p(x) =
Ω′

Ω
= exp[∆S] (48)

Specifically Ω′ is the product of the number of realizable microstates inside the system

and the number of realizable microstates outside the system,

Ω′ = Ωout(xuniv − x)Ωsystem(x) . (49)

Inside the system X has the value x, outside the system X is xuniv − x. For instance,

X could be the internal energy, E, in a closed system or the number of particles, N,

if the system is open. Because xuniv � x we can expand Ωout(xuniv − x) or rather

ln Ωout(xuniv − x) at X = xuniv, i.e.

ln Ωout(xuniv − x) ≈ ln Ωout(xuniv)−
∂ ln Ωout(X)

∂X

∣∣∣
X=xuniv

x . (50)

Thus we find

p(x) ∝ Ωsyst(x) exp

[
−∂Sout(X)

∂X

∣∣∣
X=xuniv

x

]
. (51)

If the system is in equilibrium with its surrounding (not necessarily as big as the entire

universe), then we know what the partial derivative is. From the combination of the

first and second law of thermodynamics (see for instance Ref1 section 1.4.3) follow

31

∂S

∂E

∣∣∣∣
V,N,..

=
1

T
(52)

∂S

∂V

∣∣∣∣
E,N,..

=
P

T
(53)

∂S

∂N

∣∣∣∣
E,V,..

= −µ
T

(54)

...

Notice that the subscript out is not necessary, because the above is true for the entropy

in any equilibrium system. Thus, if X is the internal energy of our system, i.e. x = E,

we have

p(E) ∝ Ωsyst(E) exp [−(1/T)E] . (55)

If on the other hand X is the number of particles in our system, i.e. x = N , we have

p(N) ∝ Ωsyst(N) exp [(1/T)µN] , (56)

where µ is the chemical potential. More generally, if we consider a system in which

both the internal energy and the particle number are variable then

p(E,N) ∝ Ωsyst(E,N) exp [−(1/T)(E − µN)] . (57)

Because the Metropolis criterion works with probability ratios we need not worry about

the proportionality constants. Following this reasoning we can construct p for every

relevant situation.

There is only the factor Ωsyst, which we need to worry about. In classical mechanics

32

(cf. (22)) we can measure the position and momentum of a particle, defining its mi-

crostate, at any time with arbitrary precision. But Heisenberg’s uncertainty principle

tells us, that this is not really true. This means that phase space is discretised in cells of

size (∆x∆px)/h ∼ 1, where h is Planck’s constant. These cells now define the possible

microstates. If our volume is V = L3, where L is the linear dimension, then we see that

doubling the linear dimension, i.e. L→ 2L, also doubles the number of cells along this

direction and thus Ωsyst ∝ V N . In addition, we must worry about the distinguishability

of microstates. Exchange of two particles looking exactly alike does produce nothing

new. This can be included by an extra factor N !−1. All in all this implies

Ωsyst ∝
V N

N !
. (58)

In the following we consider an example where this form of Ωsyst is sufficient, because

everything else cancels when we compute the probability ratios in the Metropolis cri-

terion.

Remark: It is assumed that the MC moves do not affect the kinetic energy. This

means that exp[−E/T] is replaced by Λ−3N
T exp[−U/T]. The factor Λ−3N

T results from

the integration over the momenta in the system. In the following example it cancels

out. But in other cases, e.g. the MC simulation of adsorption, we must include it.

A practical example: Gas-liquid phase coexistence

Fig. 8 depicts the phase diagram of a simple liquid 1. Our goal is the calculation of the

phase coexistence line between gas and liquid including the determination of the critical

point. For this purpose we set up two simulation boxes initially containing about 100

particles each. The particles are located on cubic lattices. The lattice constants are

chosen so that the initial number density, ρ = N/V , in both boxes is 0.3.
1If you are not familiar with simple phase diagrams, in particular gas-liquid phase coexistence, you should

read sections 4.1 and 4.2 in Ref.1

33

A
B

C

F+G

K+G

K
+
F

K F G

P

T

V

C

B

A

F+G
K+G

K
+
F

V

P

T

P

C

A,B

F
K

G

T

VA
B

C

K+G
F+G

 K
 +
F

Figure 8: Phase diagram of a simple liquid and its projections on different planes. Here the
letters G, F , andK stand for gas, liquid and solid, respectively. The notation ...+... indicates
coexistence regions between the respective phases. C indicates the gas-liquid critical point.

34

By variation of the respective particle densities, using a suitable MC algorithm,

we expect one box to approach the gas density at coexistence, ρg, whereas the other

box approaches the liquid density at coexistence, ρl. Both densities are functions of

temperature. By variation of the temperature we can trace out the entire coexistence

curve.

The thermodynamic states of the two simulation boxes are characterized by six

variables: Tg, Tl, Pg, Pl, µg, and µl, i.e. temperature, pressure, and chemical potential

in each box. However, phase coexistence is an equilibrium phenomenon which imposes

constraints. There is thermal equilibrium, which means Tg = Tl(= T). There is meach-

nical equilibrium, which means Pg = Pl. And finally there is chemical equlibrium, i.e.

µg = µl. These three constraints reduce the number of independent quantities to 3.

But in reality we can vary only one quantity on the coexistence line. If we vary T ,

then P , ρg, and ρl are fixed. Thus, we need two additional constraints. Here we choose

V = V1 + V2 = constant and N = N1 +N2 = constant, where the indices refer to the

boxes. This means in particular, when we change the box volumes and particle num-

bers in order to approach the densities at coexistence, ∆V1 = −∆V2 and ∆N1 = −∆N2.

The probability needed in the Metropolis criterion is given by

p =
2∏

ν=1

pν(Eν , Vν , Nν) ∝
2∏

ν=1

Vν
Nν

Nν !
exp [−(1/T)(Eν + PVν − µNν)] . (59)

Because of the above constraints on the total volume and the total particle number this

simplifies to

p ∝
2∏

ν=1

Vν
Nν

Nν !
exp [−(1/T)Uν] , (60)

where we also use that all moves affect the potential energy only. Now we are ready to

set up the MC algorithm.

35

Gibbs-Ensemble Monte Carlo (GEMC) algorithm

1. translation move in box 1: select particle i at random and calculate new

random position via ~r(1)
i,new = ~r

(1)
i,old + δr(ξx, ξy, ξz). Here δr is a (small) constant

maximum displacement and the ξ are independent random numbers on (-1,1).

2. Metropolis - translation move in box 1: probability ratio

pnew
pold

= exp [−(1/T)∆U] ,

where ∆U = U1,new − U1,old.

3. translation move in box 2: select particle j at random and calculate new

random position via ~r(2)
i,new = ~r

(2)
i,old + δr(ξx, ξy, ξz). Notice that every random

numbers ξ is always independent from every other ξ!

4. Metropolis - translation move in box 2: probability ratio for the Metropolis

criterion as described above is

pnew
pold

= exp [−(1/T)∆U] ,

where ∆U = U2,new − U2,old.

5. volume move: ∆V = δV ξ, V1,new = V1,old + ∆V and V2,new = V2,old −∆V .

Rescaling of particle positions via

~r
(1)
i,new=(V1,new/V1,old)

1/3 ~r
(1)
i,old ∀i ∈ {1, N1}

36

and

~r
(2)
j,new=(V2,new/V2,old)

1/3 ~r
(2)
j,old ∀j ∈ {1, N2}.

A useful maximum volume change is δV = 10−3V .

6. Metropolis - volume move: probability ratio

pnew
pold

=

(
1 +

∆V

V1,old

)N1
(

1− ∆V

V2,old

)N2

exp [−(1/T)∆U] ,

where ∆U = U1,new − U1,old + U2,new − U2,old.

7. transfer move from box 1 to box 2: select particle i in box 1 at random and

calculate new random position in box 2, ~r (2)
i,new.

8. Metropolis - transfer from 1 to 2: probability ratio

pnew
pold

=
V2N1,old

V1N2,old + 1
exp [−(1/T)∆U] ,

where ∆U = U1,new − U1,old + U2,new − U2,old.

9. transfer move from box 2 to box 1: select particle j in box 2 at random and

calculate new random position in box 1, ~r (1)
j,new.

10. Metropolis - transfer from 2 to 1: probability ratio

pnew
pold

=
V1N2,old

V2N1,old + 1
exp [−(1/T)∆U] ,

where ∆U = U1,new − U1,old + U2,new − U2,old.

11. Continue return to 1. if current number of MC steps less than K.

37

Fig. 9 depicts a snapshot taken during a GEMC simulation. At the start the red

particles where in one box and the blue ones in the other. However, irrespective of their

color they are all the same LJ particles.

Figure 9: Snapshot of the simulation boxes in a GEMC simulation. Left: gas; right: liquid
box. The red and blue particles initially were in different boxes.

• Exercise - comparison between MD and MC: Run the above GEMC code using

a density of ρ = 0.3 in each box. Allow translation moves, including their attendant

Metropolis criteria, only. Determine the equilibrium potential energies in the two in-

dependent boxes for T = 2. Using your MD program also compute the equilibrium

potential energy for ρ = 0.3 and T = 2. Compare all three potential energies.

• Project - gas-liquid coexistence: Using a programming language of your choice

write a Gibbs-Ensemble MC computer code and obtain the equilibrium densities ρg(T)

and ρl(T), including error bars, for 1.1 ≤ T < Tc (cf. Fig. 6.2 in Ref.1). The interaction

potential is the Lennard-Jones potential. Determine both the critical temperature, Tc,

and is the critical density, ρc, with the method described in Ref.3 (starting on page

85). Look up gas-liquid coexistence densities in the literature and plot them in the

T -ρ-plane together with your simulation results and the theoretical fit.

38

Concluding remarks

Which simulation method is better - Molecular Dynamics or Monte Carlo? When I

started learning how to do molecular computer simulations my world was divided in

two factions. There were those advocating the use of MD and others who favored MC.

These discussions were as sensible as the discussion of the question whether a hammer

is a better tool than a screwdriver. The answer depends on the problem - and this

is true also in the case of MD vs. MC. Even though there probably is more overlap

between the respective ranges of applications. The first programming project, thermal

conductivity, is a problem in the domain of MD. Transport phenomena, where time is

of central importance, do belong to this domain. Phase equilibria are generally easier to

simulate using MC. MC has the distinct advantage that its moves may be unphysical,

which can make them very efficient. This is because the results are equilibrium state

functions and it does not matter what path we use to obtain them. One example for

an unphysical move is the particle transfer between boxes. But there is also a risk here.

If the density is high, then particle transfer becomes inefficient. In general most basic

MC algorithms are easy to program - only the potential energy is needed. On the other

hand, they do require probably more theoretical background in Statistical Mechanics.

But then again - it is not too difficult to switch between ensembles. This is not true in

the case of MD. On the other hand, when systems get complex, e.g. macromolecular

systems, or if their density is high, the design of efficient MC moves can be difficult.

In addition, there is always the danger of unwittingly introducing a bias leading to

incorrect sampling.

I could continue listing pros and cons but in the end it comes down to experience

and practice!

One last comment on computational effort. The FORCE routine contains a double-

loop and at least the calculation of the minimum image distance is an operation O(N2).

Here we work with small systems - not larger than 100 to 300 particles. Thus we do

not need special methods improving efficiency (cf. Ref.3). MC-particle moves involve

39

one particle only (except in the case of volume changes). You should therefore avoid

computation of the potential energy of the entire system at every step. Instead keep

track of the potential energy and only update the contribution due to the moved particle.

As mentioned above, you can choose whichever programming language suits you best.

You must be aware, however, that algebraic languages, like Mathematica used in the

appendix, usually are vastly inferior, in terms of speed, to numerical languages when it

comes to molecular simulations!

Remarks on how to present your work

Present your work in the form of a 30 min talk consisting of not more than 20 slides.

One slide per exercise should be sufficient, with perhaps one exception where you need

two, to state the problem and give the answer. Assume that your audience also has read

this tutorial, i.e. do not include a general introduction to computer simulation. Focus

on the exercises and the presentation of the two projects. Here you should include

the necessary background information. Do not show computer code. Avoid fillers like

’computer simulation techniques are useful tools’. Every graph, formula, and statement

you present must have a purpose and/or convey a message. Make sure that the content

of every slide is clearly legible (size as well as color) - even from the back of the room.

It is not a bad idea to give a practice talk to a (critical) friend using the original

equipment. Aside from the slides for this talk no additional report is necessary.

Acknowledgment

I like to thank Sven Engelmann for his critical reading of this tutorial and, particularly,

for pointing out a programming mistake in calculation of the heat current. He also

supplied me with Fig. 6.

40

Appendix: Mathematica program for MD in the NVE-

ensemble

"A simple Molecular Dynamics program for"A simple Molecular Dynamics program for"A simple Molecular Dynamics program for

Lennard-Jones particles (using LJ units).Lennard-Jones particles (using LJ units).Lennard-Jones particles (using LJ units).

It realizes the NVE ensemble, i.e. theIt realizes the NVE ensemble, i.e. theIt realizes the NVE ensemble, i.e. the

number of particles, N, the volume, V,number of particles, N, the volume, V,number of particles, N, the volume, V,

and the energy of the system, E, areand the energy of the system, E, areand the energy of the system, E, are

constant.";constant.";constant.";

"The program INIT is used the initialize"The program INIT is used the initialize"The program INIT is used the initialize

various quantities. It also sets up thevarious quantities. It also sets up thevarious quantities. It also sets up the

initial particle positions and assignsinitial particle positions and assignsinitial particle positions and assigns

the initial random velocities to thethe initial random velocities to thethe initial random velocities to the

particles";particles";particles";

"Individual key pieces: MOVER - advaces"Individual key pieces: MOVER - advaces"Individual key pieces: MOVER - advaces

the positions, MOVEV - advaces thethe positions, MOVEV - advaces thethe positions, MOVEV - advaces the

velocities, FORCE - calculates thevelocities, FORCE - calculates thevelocities, FORCE - calculates the

forces felt by the individual particlesforces felt by the individual particlesforces felt by the individual particles

at their current positions";at their current positions";at their current positions";

"INIT";"INIT";"INIT";

"set parameters:";"set parameters:";"set parameters:";

"number of particles - (too) small because we use"number of particles - (too) small because we use"number of particles - (too) small because we use

Mathematica!!";Mathematica!!";Mathematica!!";

n = 3 ∗ 3 ∗ 3;n = 3 ∗ 3 ∗ 3;n = 3 ∗ 3 ∗ 3;

"number of time steps";"number of time steps";"number of time steps";

NSTEP = 100000;NSTEP = 100000;NSTEP = 100000;

41

"maximum magnitude of initial random velocity component";"maximum magnitude of initial random velocity component";"maximum magnitude of initial random velocity component";

vmax = 2.7;vmax = 2.7;vmax = 2.7;

"cut-off radius for the forces";"cut-off radius for the forces";"cut-off radius for the forces";

rcut = 3;rcut = 3;rcut = 3;

"the primary simulation box volume is V=L∧3";"the primary simulation box volume is V=L∧3";"the primary simulation box volume is V=L∧3";

L = 3;L = 3;L = 3;

"timestep";"timestep";"timestep";

∆t = 0.001;∆t = 0.001;∆t = 0.001;

"generate initial coordinates on a cubic lattice";"generate initial coordinates on a cubic lattice";"generate initial coordinates on a cubic lattice";

"initialize coordinate arrays";"initialize coordinate arrays";"initialize coordinate arrays";

x = Table[0, {i, 1, n}, {k, 1,NSTEP}];x = Table[0, {i, 1, n}, {k, 1,NSTEP}];x = Table[0, {i, 1, n}, {k, 1,NSTEP}];

y = Table[0, {i, 1, n}, {k, 1,NSTEP}];y = Table[0, {i, 1, n}, {k, 1,NSTEP}];y = Table[0, {i, 1, n}, {k, 1,NSTEP}];

z = Table[0, {i, 1, n}, {k, 1,NSTEP}];z = Table[0, {i, 1, n}, {k, 1,NSTEP}];z = Table[0, {i, 1, n}, {k, 1,NSTEP}];

"calculate particle coordinates on cubic lattice";"calculate particle coordinates on cubic lattice";"calculate particle coordinates on cubic lattice";

i = 0; max = n∧(1/3);Do[i = 0; max = n∧(1/3);Do[i = 0; max = n∧(1/3);Do[

i+=1;i+=1;i+=1;

x[[i, 1]] = ii;x[[i, 1]] = ii;x[[i, 1]] = ii;

y[[i, 1]] = jj;y[[i, 1]] = jj;y[[i, 1]] = jj;

z[[i, 1]] = kk,z[[i, 1]] = kk,z[[i, 1]] = kk,

{ii, 0,max−1},{ii, 0,max−1},{ii, 0,max−1},

{jj, 0,max−1},{jj, 0,max−1},{jj, 0,max−1},

{kk, 0,max−1}];{kk, 0,max−1}];{kk, 0,max−1}];

"display particles on cubic lattice and box boundaries";"display particles on cubic lattice and box boundaries";"display particles on cubic lattice and box boundaries";

g1 =g1 =g1 =

Graphics3D[Graphics3D[Graphics3D[

{Table[{PointSize[Large],{Table[{PointSize[Large],{Table[{PointSize[Large],

Point[{x[[i, 1]], y[[i, 1]], z[[i, 1]]}]}, {i, 1, n}],Point[{x[[i, 1]], y[[i, 1]], z[[i, 1]]}]}, {i, 1, n}],Point[{x[[i, 1]], y[[i, 1]], z[[i, 1]]}]}, {i, 1, n}],

Line[{{0, 0, 0}, {L, 0, 0}, {L,L, 0}, {0, L, 0}, {0, 0, 0},Line[{{0, 0, 0}, {L, 0, 0}, {L,L, 0}, {0, L, 0}, {0, 0, 0},Line[{{0, 0, 0}, {L, 0, 0}, {L,L, 0}, {0, L, 0}, {0, 0, 0},

42

{0, 0, L}, {L, 0, L}, {L,L,L}, {0, L, L}, {0, 0, L},{0, 0, L}, {L, 0, L}, {L,L,L}, {0, L, L}, {0, 0, L},{0, 0, L}, {L, 0, L}, {L,L,L}, {0, L, L}, {0, 0, L},

{0, L, L}, {0, L, 0}, {L,L, 0}, {L,L,L}, {L, 0, L},{0, L, L}, {0, L, 0}, {L,L, 0}, {L,L,L}, {L, 0, L},{0, L, L}, {0, L, 0}, {L,L, 0}, {L,L,L}, {L, 0, L},

{L, 0, 0}}]},Boxed→ False]{L, 0, 0}}]},Boxed→ False]{L, 0, 0}}]},Boxed→ False]

"generate random velocity components";"generate random velocity components";"generate random velocity components";

vx = Table[0, {i, 1, n}, {k, 1,NSTEP}];vx = Table[0, {i, 1, n}, {k, 1,NSTEP}];vx = Table[0, {i, 1, n}, {k, 1,NSTEP}];

vy = Table[0, {i, 1, n}, {k, 1,NSTEP}];vy = Table[0, {i, 1, n}, {k, 1,NSTEP}];vy = Table[0, {i, 1, n}, {k, 1,NSTEP}];

vz = Table[0, {i, 1, n}, {k, 1,NSTEP}];vz = Table[0, {i, 1, n}, {k, 1,NSTEP}];vz = Table[0, {i, 1, n}, {k, 1,NSTEP}];

Do[Do[Do[

vx[[i, 1]] = vmax(2Random[Real, 1]− 1);vx[[i, 1]] = vmax(2Random[Real, 1]− 1);vx[[i, 1]] = vmax(2Random[Real, 1]− 1);

vy[[i, 1]] = vmax(2Random[Real, 1]− 1);vy[[i, 1]] = vmax(2Random[Real, 1]− 1);vy[[i, 1]] = vmax(2Random[Real, 1]− 1);

vz[[i, 1]] = vmax(2Random[Real, 1]− 1),vz[[i, 1]] = vmax(2Random[Real, 1]− 1),vz[[i, 1]] = vmax(2Random[Real, 1]− 1),

{i, 1, n}];{i, 1, n}];{i, 1, n}];

"subtract center of mass velocity";"subtract center of mass velocity";"subtract center of mass velocity";

vxcm = Sum[vx[[i, 1]], {i, 1, n}]/nvxcm = Sum[vx[[i, 1]], {i, 1, n}]/nvxcm = Sum[vx[[i, 1]], {i, 1, n}]/n

vycm = Sum[vy[[i, 1]], {i, 1, n}]/nvycm = Sum[vy[[i, 1]], {i, 1, n}]/nvycm = Sum[vy[[i, 1]], {i, 1, n}]/n

vzcm = Sum[vz[[i, 1]], {i, 1, n}]/nvzcm = Sum[vz[[i, 1]], {i, 1, n}]/nvzcm = Sum[vz[[i, 1]], {i, 1, n}]/n

Do[Do[Do[

vx[[i, 1]] = vx[[i, 1]]− vxcm;vx[[i, 1]] = vx[[i, 1]]− vxcm;vx[[i, 1]] = vx[[i, 1]]− vxcm;

vy[[i, 1]] = vy[[i, 1]]− vycm;vy[[i, 1]] = vy[[i, 1]]− vycm;vy[[i, 1]] = vy[[i, 1]]− vycm;

vz[[i, 1]] = vz[[i, 1]]− vzcm,vz[[i, 1]] = vz[[i, 1]]− vzcm,vz[[i, 1]] = vz[[i, 1]]− vzcm,

{i, 1, n}];{i, 1, n}];{i, 1, n}];

"check this";"check this";"check this";

vxcm = Sum[vx[[i, 1]], {i, 1, n}]/nvxcm = Sum[vx[[i, 1]], {i, 1, n}]/nvxcm = Sum[vx[[i, 1]], {i, 1, n}]/n

vycm = Sum[vy[[i, 1]], {i, 1, n}]/nvycm = Sum[vy[[i, 1]], {i, 1, n}]/nvycm = Sum[vy[[i, 1]], {i, 1, n}]/n

vzcm = Sum[vz[[i, 1]], {i, 1, n}]/nvzcm = Sum[vz[[i, 1]], {i, 1, n}]/nvzcm = Sum[vz[[i, 1]], {i, 1, n}]/n

"initialize force array";"initialize force array";"initialize force array";

fx = Table[0, {i, 1, n}, {k, 1,NSTEP}];fx = Table[0, {i, 1, n}, {k, 1,NSTEP}];fx = Table[0, {i, 1, n}, {k, 1,NSTEP}];

fy = Table[0, {i, 1, n}, {k, 1,NSTEP}];fy = Table[0, {i, 1, n}, {k, 1,NSTEP}];fy = Table[0, {i, 1, n}, {k, 1,NSTEP}];

43

fz = Table[0, {i, 1, n}, {k, 1,NSTEP}];fz = Table[0, {i, 1, n}, {k, 1,NSTEP}];fz = Table[0, {i, 1, n}, {k, 1,NSTEP}];

0.480694

−0.11963

−0.193074

1.0691036533427433̀*∧-16

−4.11193712824132̀*∧-17

0.

"NVE - MD for LJ particles";"NVE - MD for LJ particles";"NVE - MD for LJ particles";

Timing[Timing[Timing[

"FORCE (k) ";"FORCE (k) ";"FORCE (k) ";

k = 1;k = 1;k = 1;

Do[Do[Do[

xmin = (x[[i, k]]− x[[j, k]])− LRound
[

(x[[i,k]]−x[[j,k]])
L

]
;xmin = (x[[i, k]]− x[[j, k]])− LRound

[
(x[[i,k]]−x[[j,k]])

L

]
;xmin = (x[[i, k]]− x[[j, k]])− LRound

[
(x[[i,k]]−x[[j,k]])

L

]
;

ymin = (y[[i, k]]− y[[j, k]])− LRound
[

(y[[i,k]]−y[[j,k]])
L

]
;ymin = (y[[i, k]]− y[[j, k]])− LRound

[
(y[[i,k]]−y[[j,k]])

L

]
;ymin = (y[[i, k]]− y[[j, k]])− LRound

[
(y[[i,k]]−y[[j,k]])

L

]
;

zmin = (z[[i, k]]− z[[j, k]])− LRound
[

(z[[i,k]]−z[[j,k]])
L

]
;zmin = (z[[i, k]]− z[[j, k]])− LRound

[
(z[[i,k]]−z[[j,k]])

L

]
;zmin = (z[[i, k]]− z[[j, k]])− LRound

[
(z[[i,k]]−z[[j,k]])

L

]
;

rmin2 = xmin∧2 + ymin∧2 + zmin∧2;rmin2 = xmin∧2 + ymin∧2 + zmin∧2;rmin2 = xmin∧2 + ymin∧2 + zmin∧2;

If[rmin2 < rcut∧2,If[rmin2 < rcut∧2,If[rmin2 < rcut∧2,

{f = 48/rmin2∧7− 24/rmin2∧4;{f = 48/rmin2∧7− 24/rmin2∧4;{f = 48/rmin2∧7− 24/rmin2∧4;

fx[[i, k]]+=fxmin;fx[[i, k]]+=fxmin;fx[[i, k]]+=fxmin;

44

fy[[i, k]]+=fymin;fy[[i, k]]+=fymin;fy[[i, k]]+=fymin;

fz[[i, k]]+=fzmin;fz[[i, k]]+=fzmin;fz[[i, k]]+=fzmin;

fx[[j, k]]+=− fxmin;fx[[j, k]]+=− fxmin;fx[[j, k]]+=− fxmin;

fy[[j, k]]+=− fymin;fy[[j, k]]+=− fymin;fy[[j, k]]+=− fymin;

fz[[j, k]]+=− fzmin}],fz[[j, k]]+=− fzmin}],fz[[j, k]]+=− fzmin}],

{i, 1, n− 1}, {j, i+ 1, n}];{i, 1, n− 1}, {j, i+ 1, n}];{i, 1, n− 1}, {j, i+ 1, n}];

"main loop of MD";"main loop of MD";"main loop of MD";

Do[Do[Do[

"MOVER (k-1)";"MOVER (k-1)";"MOVER (k-1)";

Do[Do[Do[

x[[i, k]] = x[[i, k − 1]] + ∆tvx[[i, k − 1]]+x[[i, k]] = x[[i, k − 1]] + ∆tvx[[i, k − 1]]+x[[i, k]] = x[[i, k − 1]] + ∆tvx[[i, k − 1]]+

(∆t∧2/2)fx[[i, k − 1]];(∆t∧2/2)fx[[i, k − 1]];(∆t∧2/2)fx[[i, k − 1]];

y[[i, k]] = y[[i, k − 1]] + ∆tvy[[i, k − 1]]+y[[i, k]] = y[[i, k − 1]] + ∆tvy[[i, k − 1]]+y[[i, k]] = y[[i, k − 1]] + ∆tvy[[i, k − 1]]+

(∆t∧2/2)fy[[i, k − 1]];(∆t∧2/2)fy[[i, k − 1]];(∆t∧2/2)fy[[i, k − 1]];

z[[i, k]] = z[[i, k − 1]] + ∆tvz[[i, k − 1]]+z[[i, k]] = z[[i, k − 1]] + ∆tvz[[i, k − 1]]+z[[i, k]] = z[[i, k − 1]] + ∆tvz[[i, k − 1]]+

(∆t∧2/2)fz[[i, k − 1]],(∆t∧2/2)fz[[i, k − 1]],(∆t∧2/2)fz[[i, k − 1]],

{i, 1, n}];{i, 1, n}];{i, 1, n}];

"FORCE (k) ";"FORCE (k) ";"FORCE (k) ";

Do[Do[Do[

xmin = (x[[i, k]]− x[[j, k]])− LRound
[

(x[[i,k]]−x[[j,k]])
L

]
;xmin = (x[[i, k]]− x[[j, k]])− LRound

[
(x[[i,k]]−x[[j,k]])

L

]
;xmin = (x[[i, k]]− x[[j, k]])− LRound

[
(x[[i,k]]−x[[j,k]])

L

]
;

ymin = (y[[i, k]]− y[[j, k]])− LRound
[

(y[[i,k]]−y[[j,k]])
L

]
;ymin = (y[[i, k]]− y[[j, k]])− LRound

[
(y[[i,k]]−y[[j,k]])

L

]
;ymin = (y[[i, k]]− y[[j, k]])− LRound

[
(y[[i,k]]−y[[j,k]])

L

]
;

zmin = (z[[i, k]]− z[[j, k]])− LRound
[

(z[[i,k]]−z[[j,k]])
L

]
;zmin = (z[[i, k]]− z[[j, k]])− LRound

[
(z[[i,k]]−z[[j,k]])

L

]
;zmin = (z[[i, k]]− z[[j, k]])− LRound

[
(z[[i,k]]−z[[j,k]])

L

]
;

rmin2 = xmin∧2 + ymin∧2 + zmin∧2;rmin2 = xmin∧2 + ymin∧2 + zmin∧2;rmin2 = xmin∧2 + ymin∧2 + zmin∧2;

If[rmin2 < rcut∧2,If[rmin2 < rcut∧2,If[rmin2 < rcut∧2,

{f = 48/rmin2∧7− 24/rmin2∧4;{f = 48/rmin2∧7− 24/rmin2∧4;{f = 48/rmin2∧7− 24/rmin2∧4;

45

fx[[i, k]]+=fxmin;fx[[i, k]]+=fxmin;fx[[i, k]]+=fxmin;

fy[[i, k]]+=fymin;fy[[i, k]]+=fymin;fy[[i, k]]+=fymin;

fz[[i, k]]+=fzmin;fz[[i, k]]+=fzmin;fz[[i, k]]+=fzmin;

fx[[j, k]]+=− fxmin;fx[[j, k]]+=− fxmin;fx[[j, k]]+=− fxmin;

fy[[j, k]]+=− fymin;fy[[j, k]]+=− fymin;fy[[j, k]]+=− fymin;

fz[[j, k]]+=− fzmin}],fz[[j, k]]+=− fzmin}],fz[[j, k]]+=− fzmin}],

{i, 1, n− 1}, {j, i+ 1, n}];{i, 1, n− 1}, {j, i+ 1, n}];{i, 1, n− 1}, {j, i+ 1, n}];

"MOVEV (k-1)";"MOVEV (k-1)";"MOVEV (k-1)";

Do[Do[Do[

vx[[i, k]] = vx[[i, k − 1]] + (∆t/2)(fx[[i, k]] + fx[[i, k − 1]]);vx[[i, k]] = vx[[i, k − 1]] + (∆t/2)(fx[[i, k]] + fx[[i, k − 1]]);vx[[i, k]] = vx[[i, k − 1]] + (∆t/2)(fx[[i, k]] + fx[[i, k − 1]]);

vy[[i, k]] = vy[[i, k − 1]] + (∆t/2)(fy[[i, k]] + fy[[i, k − 1]]);vy[[i, k]] = vy[[i, k − 1]] + (∆t/2)(fy[[i, k]] + fy[[i, k − 1]]);vy[[i, k]] = vy[[i, k − 1]] + (∆t/2)(fy[[i, k]] + fy[[i, k − 1]]);

vz[[i, k]] = vz[[i, k − 1]] + (∆t/2)(fz[[i, k]] + fz[[i, k − 1]]),vz[[i, k]] = vz[[i, k − 1]] + (∆t/2)(fz[[i, k]] + fz[[i, k − 1]]),vz[[i, k]] = vz[[i, k − 1]] + (∆t/2)(fz[[i, k]] + fz[[i, k − 1]]),

{i, 1, n}],{i, 1, n}],{i, 1, n}],

{k, 2,NSTEP}]]{k, 2,NSTEP}]]{k, 2,NSTEP}]]

{1204.27,Null}

"pictorial representation of selected particlès path"pictorial representation of selected particlès path"pictorial representation of selected particlès path

including the initial lattice";including the initial lattice";including the initial lattice";

g2 =g2 =g2 =

Graphics3D[Graphics3D[Graphics3D[

{Red,Point[Table[{x[[1, k]], y[[1, k]], z[[1, k]]},{Red,Point[Table[{x[[1, k]], y[[1, k]], z[[1, k]]},{Red,Point[Table[{x[[1, k]], y[[1, k]], z[[1, k]]},

{k, 2,NSTEP}]],{k, 2,NSTEP}]],{k, 2,NSTEP}]],

{Green,Point[Table[{x[[8, k]], y[[8, k]], z[[8, k]]},{Green,Point[Table[{x[[8, k]], y[[8, k]], z[[8, k]]},{Green,Point[Table[{x[[8, k]], y[[8, k]], z[[8, k]]},

{k, 2,NSTEP}]]},{k, 2,NSTEP}]]},{k, 2,NSTEP}]]},

{Blue,Point[Table[{x[[16, k]], y[[16, k]], z[[16, k]]},{Blue,Point[Table[{x[[16, k]], y[[16, k]], z[[16, k]]},{Blue,Point[Table[{x[[16, k]], y[[16, k]], z[[16, k]]},

{k, 2,NSTEP}]]},{k, 2,NSTEP}]]},{k, 2,NSTEP}]]},

46

{Magenta,Point[Table[{x[[24, k]], y[[24, k]], z[[24, k]]},{Magenta,Point[Table[{x[[24, k]], y[[24, k]], z[[24, k]]},{Magenta,Point[Table[{x[[24, k]], y[[24, k]], z[[24, k]]},

{k, 2,NSTEP}]]}},Boxed→ False];{k, 2,NSTEP}]]}},Boxed→ False];{k, 2,NSTEP}]]}},Boxed→ False];

Show[g1, g2]Show[g1, g2]Show[g1, g2]

"Instantaneous temperature vs. time";"Instantaneous temperature vs. time";"Instantaneous temperature vs. time";

Table[Table[Table[

{∆tk, Sum[(vx[[i, k]]∧2 + vy[[i, k]]∧2 + vz[[i, k]]∧2), {i, 1, n}]/{∆tk, Sum[(vx[[i, k]]∧2 + vy[[i, k]]∧2 + vz[[i, k]]∧2), {i, 1, n}]/{∆tk, Sum[(vx[[i, k]]∧2 + vy[[i, k]]∧2 + vz[[i, k]]∧2), {i, 1, n}]/

(3n)}, {k, 2,NSTEP}];(3n)}, {k, 2,NSTEP}];(3n)}, {k, 2,NSTEP}];

ListPlot[%, Joined→ True,PlotRange→ {1, 4},PlotStyle→ Black,ListPlot[%, Joined→ True,PlotRange→ {1, 4},PlotStyle→ Black,ListPlot[%, Joined→ True,PlotRange→ {1, 4},PlotStyle→ Black,

AxesLabel→ {"time", "T"}]AxesLabel→ {"time", "T"}]AxesLabel→ {"time", "T"}]

0 20 40 60 80 100
time

1.5

2.0

2.5

3.0

3.5

4.0

T

47

References

(1) R. Hentschke Thermodynamics Springer: Heidelberg, 2014.

(2) R. Hentschke Statistische Mechanik Wiley-VCH: Weinheim, 2004.

(3) R. Hentschke, E.M. Aydt, B. Fodi, E. Stöckelmann Molekulares Modellieren mit

Kraftfeldern.

(4) Handbook of Chemistry and Physics, (Ed. D. R. Lide), CRC Press:Boca Raton

(5) R. Hentschke A short Introduction to Quantum Theory, lecture notes

(6) D. S. Evans, Statistical Mechanics of Nonequilibrium Liquids Cambridge Univer-

sity Press: Cambridge, 2014 (section 4); S. Engelmann, J. Meyer, R. Hentschke

Computer Simulation of Thermal Conductivity in vulcanized polyisoprene at vari-

able strain and temperature Physical Review B 96, 054110 (2017)

48

