## Corrections Thermodynamics by R. Hentschke (June 22, 2022)

corrected

. . .

| p. 31 (above Eq. $(2.21)$ )           | $\Delta p_z = 2m\Delta z/\Delta t$                                                                                       | $\Delta p_z$                                                                                                        |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| p. 33 (Eq. (2.28))                    | $E = \dots$                                                                                                              | $E = N \dots$                                                                                                       |
| p. 33 (Eq. (2.29))                    | $P = \dots$                                                                                                              | $P = N \dots$                                                                                                       |
| p. 34 (Eq. (2.31))                    | $\ldots - d \ln V)$                                                                                                      | $\ldots + d \ln V)$                                                                                                 |
| p. 57 (above Eq. (2.124))             | $2\pi R\vec{\gamma}\cos\theta = \vec{\gamma}_{TA} - \vec{\gamma}_{TL} = m\vec{g}$                                        | $2\pi R(\vec{\gamma}_{TA} - \vec{\gamma}_{TL}) = m\vec{g}$<br>with $\gamma \cos \theta = \gamma_{TA} - \gamma_{TL}$ |
| p. 57 (below Eq. (2.124))             | Nobel Prize in chemistry                                                                                                 | Nobel Prize in physics                                                                                              |
| p. 65 (line above Eq. $(2.149)$ )     | $\ldots - T \frac{\partial P}{\partial V} \bigg _T \frac{\partial V}{\partial T} \bigg _P$                               | $\ldots - T \frac{\partial P}{\partial V} \Big _T \left( \frac{\partial V}{\partial T} \Big _P \right)^2$           |
| p. 66 (Eq. (2.152))                   | $\cdots \underbrace{\frac{\partial T}{\partial S}\Big _P}_{\stackrel{(2.147)}{=}} \underbrace{\frac{T}{C_P}}_{T} \cdots$ | $\cdots \underbrace{\frac{\partial T}{\partial S}}_{\substack{(2.147)\\=\frac{T}{C_P}}} \cdots$                     |
| p. 100 (in example)                   | Typo-Amphiphilic                                                                                                         | Amphiphilic                                                                                                         |
| p. 105 (in figure caption)            | (4.102)                                                                                                                  | (3.102)                                                                                                             |
| p. 115 middle                         | $\dots e_{1s}^{(o)} - e_p^{(o)} - e_e^{(o)} \dots$                                                                       | $\dots - e_{1s}^{(o)} + e_p^{(o)} + e_e^{(o)} \dots$                                                                |
| ibid. (2nd eqn. from bottom)          | $\dots \mu_i \dots$                                                                                                      | $\dots \mu_i/R\dots$                                                                                                |
| p. 116 middle                         | $\dots 1.75 \cdot 10^{-24} \dots$                                                                                        | $\dots 1.75 \cdot 10^{-24} T^3 \dots$                                                                               |
| Fig. 3.18                             |                                                                                                                          | see below                                                                                                           |
| p. 144 (Eq. (4.46))                   | $\cdots \stackrel{(3.107)(3.165)}{=} \cdots$                                                                             | $\dots \stackrel{(2.105)(2.165)}{=} \dots$                                                                          |
| p. 182 (sentence above Eq. $(5.33)$ ) | $\dots$ free energy $\dots$                                                                                              | $\ldots$ differential free energy .                                                                                 |
| p. 182 (Eq. (5.33))                   | $f = -Ts + \frac{1}{2}\sigma_{\alpha\beta}u_{\alpha\beta}$                                                               | $df = -sdT + \sigma_{\alpha\beta}du_{\alpha\beta}$                                                                  |
| p. 184 (below Eq. (5.43))             | $\ldots \sigma_x^2 = \sigma_x^2 = \sigma_x^2 = \ldots$                                                                   | $\ldots \sigma_x^2 = \sigma_y^2 = \sigma_z^2 = \ldots$                                                              |
| p. 192 (Eq. (5.77))                   | $\ldots = \frac{\partial}{\partial T} \langle E \rangle \ldots$                                                          | $\ldots = \frac{1}{k_B} \frac{\partial}{\partial T} \langle E \rangle \ldots$                                       |
| p. 195 (3rd line from bottom)         | $\dots \ln Q^{rot} \dots$                                                                                                | $\dots T \ln Q^{rot} \dots$                                                                                         |
| p. 238 (last paragraph)               | Chaperon                                                                                                                 | Clapeyron                                                                                                           |

incorrect

|                                   | incorrect                                                                                                       | corrected                                                                                                  |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| ibid.                             | Kofta                                                                                                           | Kofke                                                                                                      |
| throughout chapter 7              | $\dots \stackrel{(n.xy)}{=} \dots$                                                                              | $\dots \stackrel{(n-1.xy)}{=} \dots$                                                                       |
| p. 243 (unnum. equation)          | $\ldots - \int d\{\Delta x\} \ldots$                                                                            | $\ldots - k_B \int d\{\Delta x\} \ldots$                                                                   |
| p. 245 (Eq. (7.27))               | $\dots \frac{\Delta x_j}{dt}$                                                                                   | $\dots \frac{d\Delta x_j}{dt}$                                                                             |
| p. 246 (Eq. (7.31))               | $\dots Big ^o_{E_ u,q_ u}$                                                                                      | $\cdots \Big _{E_{ u},q_{ u}}^{o}$                                                                         |
| p. 248 (line above Eq. $(7.44)$ ) | Eq. (7.41)                                                                                                      | Eq. (7.42)                                                                                                 |
| p. 251 (Eq. (7.61))               | $\dots \Delta X_j \Delta X_j \ge 0$                                                                             | $\dots \Delta X_j \Delta X_{j'} \ge 0$                                                                     |
| p. 252 (eqn. above $(7.63)$ )     | $\dots \Delta X_j \Delta X'_j \dots$                                                                            | $\dots \Delta X_j \Delta X_{j'} \dots$                                                                     |
| p. 256 (3rd line from top)        | $\dots \vec{A} \dots$                                                                                           | $\dots dec{A}\dots$                                                                                        |
| ibid.                             | is an                                                                                                           | is a                                                                                                       |
| p. 256 (above Eq. $(7.78)$ )      | $\dots (8.77) \dots$                                                                                            | $\dots (7.77)\dots$                                                                                        |
| p. 257 (sentence below $(7.86)$ ) | the velocity relative                                                                                           | is the velocity relative to                                                                                |
| p. 259 (line above $(7.103)$ )    | cf. $(1.51)$                                                                                                    | cf. $(1.51), \ldots$                                                                                       |
| p. 260 (2nd eqn. from top)        | $\dots \stackrel{(8.94)}{=} \dots$                                                                              | $\cdots \stackrel{(7.94)}{=} \cdots$                                                                       |
| ibid. (4th eqn. from top)         | $\dots \stackrel{(8.94)(8.95)(8.96)}{=} \dots$                                                                  | $\cdots \stackrel{(7.87)(7.95)(7.99)}{=} \cdots$                                                           |
| ibid. (Eq. (7.104))               | $\dots \stackrel{(8.77)(8.100)}{=} \dots$                                                                       | $\cdots \stackrel{(7.77)(7.100)}{=} \cdots$                                                                |
| ibid. (Eq. (7.104))               | $\dots \stackrel{(8.83)}{=} \dots$                                                                              | $\cdots \stackrel{(7.83)}{=} \cdots$                                                                       |
| ibid. & Table 7.2                 | $\mu_i$                                                                                                         | $\mu_i/m_i$                                                                                                |
| p. 261 (Example)                  | $rac{d\xi^{\prime()}}{dt}= u_{}rac{dn_{}/V}{dt}$                                                              | $\frac{d\xi^{\prime()}}{dt} = \nu_{}^{-1} \frac{dn_{}/V}{dt}$                                              |
| ibid.                             | $\dots (\nu_A^2 \mu_A + \nu_X^{(1)} \nu_A \mu_X) \dots$ $\dots (\nu_X^{(2)} \nu_B \mu_X + \nu_B^2 \mu_B) \dots$ | $\dots (\mu_A + \nu_X^{(1)} \nu_A^{-1} \mu_X) \dots \\ \dots (\nu_X^{(2)} \nu_B^{-1} \mu_X + \mu_B) \dots$ |
| p. 262                            | $\ldots \rho[m_A] \ldots$ and $\ldots \rho[m_B] \ldots$                                                         | $\dots \rho[m_A]/m_A \dots$ and $\dots \rho[m_B]/m_B \dots$                                                |
| p. 267 (8 lines above (7.131))    | less than one                                                                                                   | greater than one                                                                                           |
| p. 274 (3 ×)                      | RNS                                                                                                             | RNA                                                                                                        |

incorrect

corrected



## p. 275 (sentence above (7.141)) According to Eq. (7.139)... According to Eq. (7.140)...

## Comments

p. 185 The first paragraph contains the sentence: In addition we may identify  $\delta L$  in Eq. (5.38) with  $\delta R$  in Eq. (5.45). As the next sentence points out, we do not stretch a single polymer chain however. We deform many chains inside a macroscopic sample. A more detailed calculation shows that in the case of a rubber sample, whose volume to very good approximation is constant during the deformation, we obtain  $\delta S/\delta L|_T \approx -3k_B N_c \delta L/L_o^2$  in the limit of small strain. Here  $N_c$  is the number of chains in the sample. In particular we notice that the dependence on the segment length a has disappeared - which is important! Readers familiar with polymer physics probably know that a in molecular theories of single polymer.