Corrections Classical Mechanics by R. Hentschke (as of January 26, 2020)

> incorrect corrected
p. $41(3 \mathrm{rd} \S)$
p. 79 (2nd §)
p. 80 (line above Eq. (3.34))
p. 270 (Eqs. (9.56), (9.58))
ibid. (Eq. (9.57))
ibid. (Eq. (9.59))
p. 332 (line 8 from bottom)
p. 334 (first line)
...baseball some $70 \mathrm{~m} .$. ...basketball some $35 \mathrm{~m} .$. .
According to of ...
...(3.20):
$\nu_{i(k)}$
λ^{2-1}
$T_{B-T}(k)$
equation
$\int_{0}^{1}(\ldots)$
$\int_{0}^{1} d x(\ldots)$

Comments:

p. 176 Another variant of this problem is the shape of a chain hanging between two poles. In this case $U_{\text {pot }}=-\rho g \int_{\text {chain }} u(x) d s$, where again $d s=\sqrt{d x^{2}+d u^{2}}$. But there is no tension term, i.e. the chain is not stretched. The resulting shape is $u(x)=a \cosh (x / a)$, where a is obtained by solving $\sinh (L /(2 a))=l /(2 a)$ numerically. Here l is the length of the chain and L is the distance between the poles.

