Corrections Classical Mechanics by R. Hentschke (as of January 26, 2020)

	incorrect	corrected
p. 41 (3rd §)	baseball some 70 m	basketball some 35 m
p. 79 (2nd §)	According to of	According to
p. 80 (line above Eq. $(3.34))$	(3.20):	(3.21):
p. 270 (Eqs. (9.56), (9.58))	$ u_{i(k)}$	$ u_i(k)$
ibid. (Eq. (9.57))	λ^{2-1}	$\lambda^2 - 1$
ibid. (Eq. (9.59))	$T_{B-T}(k)$	$T_B - T(k)$
p. 332 (line 8 from bottom)	equation	equations
p. 334 (first line)	$\int_0^1 ()$	$\int_{0}^{1}dx\left(ight)$

Comments:

p.176 Another variant of this problem is the shape of a chain hanging between two poles. In this case $U_{pot} = -\rho g \int_{\text{chain}} u(x) ds$, where again $ds = \sqrt{dx^2 + du^2}$. But there is no tension term, i.e. the chain is not stretched. The resulting shape is $u(x) = a \cosh(x/a)$, where a is obtained by solving $\sinh(L/(2a)) = l/(2a)$ numerically. Here l is the length of the chain and L is the distance between the poles.